Home
Class 11
CHEMISTRY
Calculate the standard free energy chang...

Calculate the standard free energy change for the formation of methane at `300K`:
`C("graphite") +2H_(2) (g) rarr CH_(4)(g)`
The following data are given:
`Delta_(f)H^(Theta) (kJ mol^(-1)): CH_(4)(g) =- 74.81`
`Delta_(f)S^(Theta)(JK^(-1) mol^(-1)): C("graphite") = 5.70, H_(2)(g) = 130.7 CH_(4)(g) = 186.3`

Text Solution

Verified by Experts

`Delta_(r)G^(@)` can be calculated from the relation :
`Delta_(r)G^(@) = Delta_(r)H^(@) - T Delta_(r)S^(@)`
`C("graphite") + 2H_(2)(g) to CH_(4)(g)`
`Delta_(r)H^(@) = Delta_(f)H^(@)(CH_(4)) - [Delta_(f)H^(@)(C) + 2Delta_(f)H^(@)(H_(2)]`
` = -74.81 - 0-0 = - 74.81 kJ "mol"^(-1)`
`Delta_(r)S^(@) = S_(m)^(@)(CH_(4))-[S_(M)^(@)(C) + 2S_(M)^(@)(H_(2))]`
` = 186.3 - [5.70 + 2 xx 130.7]`
` = 186.3 -267.1`
` = -80.8 J K^(-1) "mol"^(-1)`
`therefore Delta_(r)G^(@) = Delta_(r)H^(@) - TDelta_(r)S^(@)`
`= -74.81 - 298 xx (80.8 xx 10^(-3))`
` = -74.81 + 24.08 = -50.73 kJ "mol"^(-1)`
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    MODERN PUBLICATION|Exercise Practice Problems|65 Videos
  • THERMODYNAMICS

    MODERN PUBLICATION|Exercise Advanced Level Problems|15 Videos
  • STRUCTURE OF ATOM

    MODERN PUBLICATION|Exercise Unit Practice Test|13 Videos

Similar Questions

Explore conceptually related problems

Calculate the standard free energy change for the formation of methane at 300K : C("graphite") +2H_(2) (g) rarr CH_(4)(g) The following data are given: Delta_(f)H^(Theta) (kJ mol^(-1)): CH_(4)(g) =- 74.81 Delta_(f)S^(Theta)(kJ mol^(-1)): C("graphite") = 5.70, H_(2)(g) = 130.7 CH_(4)(g) = 186.3

Calculate the standard Gibbs energy change for the formation of propane at 298 K: 3C("graphite") + 4H_(2)(g) to C_(3)H_(8)(g) Delta_(f)H^(@) for propane, C_(3)H_(8)(g) = -103.8 kJ mol^(-1) . Given : S_(m)^(0)[C_(3)H_(8)(g)] = 270.2 J K^(-1) "mol"^(-1) S_(m)^(@)("graphite") = 5.70 J K^(-1) "mol"^(-1) and S_(m)^(0)[H_(2)(g)] = 130.7 J K^(-1) "mol"^(-1) .

Calculate the standard molar entropy change for the formation of gaseous propane (C_(3)H_(8)) at 293K . 3C("graphite") +4H_(2)(g) rarr C_(3)H_(8)(g) Standard molar entropies S_(m)^(Theta) (JK^(-1)mol^(-1)) are: C("graphite") = 5.7, H_(2)(g) = 130.7,C_(3)H_(5)(g) = 270.2

Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) =- 206.8 J K^(-1) mol^(-1) .

Calculate the standard Gibbs free energy change from the free energies of formation data for the following reaction: C_(6)H_(6)(l) +(15)/(2)O_(2)(g) rarr 6CO_(2)(g) +3H_(2)O(g) Given that Delta_(f)G^(Theta) =[C_(6)H_(6)(l)] = 172.8 kJ mol^(-1) Delta_(f)G^(Theta)[CO_(2)(g)] =- 394.4 kJ mol^(-1) Delta_(f)G^(Theta) [H_(2)O(g)] =- 228.6 kJ mol^(-1)

The standard Gibb's energy change for the formation of propane. C_(3)H_(8) (g) at 298 K is [Delta_(f)H^(theta) for propane =-103.85 kJ" mole"^(-1), S^(theta)._(m)C_(3)H_(8)(g)=270.2J.K^(-1) mol^(-1), S^(theta)._(m)H_(2)(g)=130.68J.K^(-1) mol^(-1) . and S^(theta)._(m)C_("(graphite)")=5.74JK^(-1) mol^(-1)]

Compute the standard free enegry of the reaction at 27^(@)C for the combustion fo methane using the give data: CH_(4)(g) +2O_(2)(g) rarr CO_(2)(g) +2H_(2)O(l) {:(Species,CH_(4),O_(2),CO_(2),2H_(2)O(l)),(Delta_(f)H^(Theta)(kJmol^(-1)),-74.8,-,-393.5,-285.8),(S^(Theta)(JK^(-1)mol^(-1)),186,205,214,70):}