Home
Class 11
CHEMISTRY
Calculate the standard Gibbs energy chan...

Calculate the standard Gibbs energy change for the formation of propane at 298 K:
`3C("graphite") + 4H_(2)(g) to C_(3)H_(8)(g)`
`Delta_(f)H^(@)` for propane, `C_(3)H_(8)(g) = -103.8 kJ mol^(-1)`.
Given : `S_(m)^(0)[C_(3)H_(8)(g)] = 270.2 J K^(-1) "mol"^(-1)`
`S_(m)^(@)("graphite") = 5.70 J K^(-1) "mol"^(-1)`
and `S_(m)^(0)[H_(2)(g)] = 130.7 J K^(-1) "mol"^(-1)`.

Text Solution

AI Generated Solution

To calculate the standard Gibbs energy change (ΔG°) for the formation of propane (C₃H₈) at 298 K, we will use the following formula: \[ \Delta G° = \Delta H° - T \Delta S° \] ### Step 1: Calculate ΔH° for the reaction ...
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    MODERN PUBLICATION|Exercise Practice Problems|65 Videos
  • THERMODYNAMICS

    MODERN PUBLICATION|Exercise Advanced Level Problems|15 Videos
  • STRUCTURE OF ATOM

    MODERN PUBLICATION|Exercise Unit Practice Test|13 Videos

Similar Questions

Explore conceptually related problems

The standard Gibb's energy change for the formation of propane. C_(3)H_(8) (g) at 298 K is [Delta_(f)H^(theta) for propane =-103.85 kJ" mole"^(-1), S^(theta)._(m)C_(3)H_(8)(g)=270.2J.K^(-1) mol^(-1), S^(theta)._(m)H_(2)(g)=130.68J.K^(-1) mol^(-1) . and S^(theta)._(m)C_("(graphite)")=5.74JK^(-1) mol^(-1)]

Calculate the standard molar entropy change for the formation of gaseous propane (C_(3)H_(8)) at 293K . 3C("graphite") +4H_(2)(g) rarr C_(3)H_(8)(g) Standard molar entropies S_(m)^(Theta) (JK^(-1)mol^(-1)) are: C("graphite") = 5.7, H_(2)(g) = 130.7,C_(3)H_(5)(g) = 270.2

Calculate the standard free energy change for the formation of methane at 300K : C("graphite") +2H_(2) (g) rarr CH_(4)(g) The following data are given: Delta_(f)H^(Theta) (kJ mol^(-1)): CH_(4)(g) =- 74.81 Delta_(f)S^(Theta)(kJ mol^(-1)): C("graphite") = 5.70, H_(2)(g) = 130.7 CH_(4)(g) = 186.3

Calculate the standard free energy change for the reaction : H_(2)(g) + I_(2)(g) to 2HI(g) DeltaH^(@) = 51.9 kJ "mol"^(-1) Given : S^(@)(H_(2)) = 130.6 J K^(-1) "mol"^(-1) S^(@)(I_(2)) = 116.7 J K^(-1) "mol"^(-1) and S^(@)(HI) = 206.3 J K^(-1) "mol"^(-1) .

Using Delta_(f)H^(@) and S_(m)^(@) calculate the standard Gibbs energy of formation, Delta_(f)G^(@) for each following : (a) CS_(2)(l) (b) N_(2)H_(4)(l) Delta_(f)H^(@)(CS_(2)) = 89.70 kJ "mol"^(-1), Delta_(r)S^(@)(CS_(2)) = 151.34 J K^(-1) "mol"^(-1) Delta_(f)H^(@)(N_(2)H_(4)) = 50.63 kJ "mol"^(-1) , Delta_(r)S^(@)N_(2)H_(2) = 121.21 J K^(-1) "mol"^(-1) .

Calculate the entropy changes for the following reactions : (i) 2CO(g) + O_(2)(g) to 2CO_(2)(g) (ii) 2H_(2)(g) + O_(2)(g) to 2H_(2)O(l) Entropies of different compounds are : CO(g) = 197.6 J K^(-1) "mol"^(-1), O_(2)(g) = 205.03 J K^(-1) "mol"^(-1) CO_(2)(g) = 213.6 JK^(-1) "mol"^(-1), H_(2)(g) = 130.6 J K^(-1) "mol"^(-1) H__(2)O(l) = 69.96 J K^(-1) "mol"^(-1)

Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) =- 206.8 J K^(-1) mol^(-1) .

Calculate the standard Gibbs free energy change from the free energies of formation data for the following reaction: C_(6)H_(6)(l) +(15)/(2)O_(2)(g) rarr 6CO_(2)(g) +3H_(2)O(g) Given that Delta_(f)G^(Theta) =[C_(6)H_(6)(l)] = 172.8 kJ mol^(-1) Delta_(f)G^(Theta)[CO_(2)(g)] =- 394.4 kJ mol^(-1) Delta_(f)G^(Theta) [H_(2)O(g)] =- 228.6 kJ mol^(-1)