Home
Class 11
CHEMISTRY
Calculate the equilibrium constant for t...

Calculate the equilibrium constant for the reaction : `NO(g) + 1/2 O_(2)(g) iff NO_(2)(g)`
Given, `Delta_(f)H^(@) at 298 K : NO(g) = 90.4 kJ "mol"^(-1), NO_(2)(g)` = `33.8 kJ "mol"^(-1)` and `DeltaS^(@)` at `298 K = -70.8 J K^(-1) "mol"^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the equilibrium constant \( K_c \) for the reaction \[ \text{NO}(g) + \frac{1}{2} \text{O}_2(g) \iff \text{NO}_2(g) \] we will follow these steps: ### Step 1: Calculate \( \Delta H^\circ \) for the reaction Using the standard enthalpy of formation values provided: - \( \Delta_f H^\circ \) for \( \text{NO}(g) = 90.4 \, \text{kJ/mol} \) - \( \Delta_f H^\circ \) for \( \text{NO}_2(g) = 33.8 \, \text{kJ/mol} \) - \( \Delta_f H^\circ \) for \( \text{O}_2(g) = 0 \, \text{kJ/mol} \) (since it is in its standard state) The formula for \( \Delta H^\circ \) of the reaction is: \[ \Delta H^\circ = \Delta_f H^\circ (\text{products}) - \Delta_f H^\circ (\text{reactants}) \] Substituting the values: \[ \Delta H^\circ = \Delta_f H^\circ (\text{NO}_2) - \left( \Delta_f H^\circ (\text{NO}) + \frac{1}{2} \Delta_f H^\circ (\text{O}_2) \right) \] \[ \Delta H^\circ = 33.8 \, \text{kJ/mol} - \left( 90.4 \, \text{kJ/mol} + \frac{1}{2} \times 0 \right) \] \[ \Delta H^\circ = 33.8 \, \text{kJ/mol} - 90.4 \, \text{kJ/mol} = -56.6 \, \text{kJ/mol} \] ### Step 2: Convert \( \Delta H^\circ \) to Joules To use in the Gibbs free energy equation, we convert \( \Delta H^\circ \) to Joules: \[ \Delta H^\circ = -56.6 \times 10^3 \, \text{J/mol} = -56600 \, \text{J/mol} \] ### Step 3: Use the given \( \Delta S^\circ \) Given: \[ \Delta S^\circ = -70.8 \, \text{J/K} \cdot \text{mol} \] ### Step 4: Calculate \( \Delta G^\circ \) Using the Gibbs free energy equation: \[ \Delta G^\circ = \Delta H^\circ - T \Delta S^\circ \] At \( T = 298 \, \text{K} \): \[ \Delta G^\circ = -56600 \, \text{J/mol} - 298 \, \text{K} \times (-70.8 \, \text{J/K} \cdot \text{mol}) \] Calculating: \[ \Delta G^\circ = -56600 \, \text{J/mol} + 21098.4 \, \text{J/mol} \] \[ \Delta G^\circ = -35501.6 \, \text{J/mol} \] ### Step 5: Calculate \( K_c \) Using the relationship between \( \Delta G^\circ \) and \( K_c \): \[ \Delta G^\circ = -2.303 RT \log K_c \] Where \( R = 8.314 \, \text{J/(K} \cdot \text{mol)} \) and \( T = 298 \, \text{K} \): Rearranging gives: \[ \log K_c = -\frac{\Delta G^\circ}{2.303 RT} \] Substituting the values: \[ \log K_c = -\frac{-35501.6 \, \text{J/mol}}{2.303 \times 8.314 \, \text{J/(K} \cdot \text{mol)} \times 298 \, \text{K}} \] Calculating: \[ \log K_c = \frac{35501.6}{2.303 \times 8.314 \times 298} \] Calculating the denominator: \[ 2.303 \times 8.314 \times 298 \approx 5730.6 \] Thus: \[ \log K_c \approx 6.22 \] ### Step 6: Find \( K_c \) To find \( K_c \): \[ K_c = 10^{6.22} \approx 1.67 \times 10^6 \] ### Final Answer: \[ K_c \approx 1.67 \times 10^6 \] ---

To calculate the equilibrium constant \( K_c \) for the reaction \[ \text{NO}(g) + \frac{1}{2} \text{O}_2(g) \iff \text{NO}_2(g) \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    MODERN PUBLICATION|Exercise Advanced Level Problems|15 Videos
  • THERMODYNAMICS

    MODERN PUBLICATION|Exercise Conceptual Questions -1|19 Videos
  • THERMODYNAMICS

    MODERN PUBLICATION|Exercise Unit Practice Test|12 Videos
  • STRUCTURE OF ATOM

    MODERN PUBLICATION|Exercise Unit Practice Test|13 Videos

Similar Questions

Explore conceptually related problems

Calculate the equilibrium constant for the reaction : NO(g) + 1/2 O_(2)(g) iff NO_(2)(g) Given, Delta_(f)H^(@) at 298K : NO(g) = 90.4 kJ "mol"^(-1), NO_(2)(g) = 33.8 kJ "mol"^(-1) and DeltaS^(@) at 298 K = -70.8 J K^(-1) "mol"^(-1) , R = 8.31 J K^(-1) "mol"^(-1) .

Calculate equilibrium constant for the reaction: 2SO_(2)(g) +O_(2)(g) hArr 2SO_(3)(g) at 25^(@)C Given: Delta_(f)G^(Theta) SO_(3)(g) = - 371.1 kJ mol^(-1) , Delta_(f)G^(Theta)SO_(2)(g) =- 300.2 kJ mol^(-1) and R = 8.31 J K^(-1) mol^(-1)

Calculated the equilibrium constant for the following reaction at 298K : 2H_(2)O(l) rarr 2H_(2)(g) +O_(2)(g) Delta_(f)G^(Theta) (H_(2)O) =- 237.2 kJ mol^(-1),R = 8.314 J mol^(-1) K^(-1)

Calculate the equilibrium constant, K for the following reaction at 400K? 2NOCl_((g))iff2NO_((g))+Cl_(2(g)) Given that Delta_(r)H^(0)=80.0KJmol^(-1) and Delta_(r)S^(0)=120JK^(-1)mol^(-1) at 400 K.

Calculate the equilibrium constant for the following reaction at 298K and 1 atmospheric pressure: C(graphite) +H_(2)O(l) rarr CO(g) +H_(2)(g) Given Delta_(f)H^(Theta) at 298 K for H_(2)O(l) =- 286.0 kJ mol^(-1) for CO(g) =- 110.5 kJ mol^(-1) DeltaS^(Theta) at 298K for the reaction = 252.6 J K^(-1) mol^(-1)

What is the equilibrium constant K_(c) for the following reaction at 400K ? 2NOCI(g) hArr 2NO(g) +CI_(2)(g) DeltaH^(Theta) = 77.2 kJ mol^(-1) and DeltaS^(Theta) = 122 J K^(-1) mol^(-1) at 400K .

MODERN PUBLICATION-THERMODYNAMICS-Practice Problems
  1. Calculate the Gibbs energy change on dissolving one mole of sodium chl...

    Text Solution

    |

  2. The value of DeltaH and DeltaS for two reactions are given below : R...

    Text Solution

    |

  3. At what temperature does the reduction of lead oxide to lead by carbon...

    Text Solution

    |

  4. For the reaction at 298 K 2A + B to C DeltaH = 40 kJ "mol"^(-1) a...

    Text Solution

    |

  5. Consider the reaction: 2NO(g)+O(2)(g) rarr 2NO(2)(g) Calculated th...

    Text Solution

    |

  6. Calculate the Delta(r)G^(@) for the reaction: C(6)H(12)O(6)(s) + 6O(...

    Text Solution

    |

  7. Calculate DeltaG^(@) for the reaction NO(g) iff 1/2 N(2)(g) + 1/2 O(...

    Text Solution

    |

  8. The equilibrium constant for the reaction CO(2)(g) +H(2)(g) hArr CO(...

    Text Solution

    |

  9. Calculated the equilibrium constant for the following reaction at 298K...

    Text Solution

    |

  10. The equilibrium constant for the reaction: CH(3)COOH(l) + C(2)H(5)OH...

    Text Solution

    |

  11. Calculate the entropy change for a reaction: XrarrY Given that Del...

    Text Solution

    |

  12. Calculate the equilibrium constant for the following reaction at 298K ...

    Text Solution

    |

  13. For the equilibrium reaction : 2H(2)(g) + O(2)(g) iff 2H(2)O(l) at 298...

    Text Solution

    |

  14. Calculate the equilibrium constant for the reaction : NO(g) + 1/2 O(2)...

    Text Solution

    |

  15. DeltaH^(Theta) and DeltaS^(Theta) for the reaction: Br(2)(l) +CI(2)(...

    Text Solution

    |

  16. Calculate the standard free energy change for the reaction : H(2)(g)...

    Text Solution

    |

  17. Calculate Delta(r)G^(@) for the reaction : CO(g) + 1/2O(2)(g) to CO(2)...

    Text Solution

    |

  18. Calculate the change of entropy, Delta(r)S^(Theta) at 298K for the rea...

    Text Solution

    |

  19. Calculate the standard molar entropy chnage for the following reaction...

    Text Solution

    |

  20. Using Delta(f)H^(@) and S(m)^(@) calculate the standard Gibbs energy o...

    Text Solution

    |