Home
Class 11
CHEMISTRY
Calculate the standard free energy chang...

Calculate the standard free energy change for the reaction :
`H_(2)(g) + I_(2)(g) to 2HI(g) DeltaH^(@) = 51.9 kJ "mol"^(-1)` Given : `S^(@)(H_(2)) = 130.6 J K^(-1) "mol"^(-1)`
`S^(@)(I_(2)) = 116.7 J K^(-1) "mol"^(-1)` and `S^(@)(HI) = 206.3 J K^(-1) "mol"^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the standard free energy change (ΔG°) for the reaction: \[ H_2(g) + I_2(g) \rightarrow 2HI(g) \] we will use the Gibbs free energy equation: \[ \Delta G° = \Delta H° - T \Delta S° \] ### Step 1: Calculate ΔS° We need to find the change in entropy (ΔS°) for the reaction. The formula for ΔS° is: \[ \Delta S° = S°_{\text{products}} - S°_{\text{reactants}} \] For our reaction: - Products: 2 moles of HI - Reactants: 1 mole of H₂ and 1 mole of I₂ Using the given standard entropy values: - \( S°(H_2) = 130.6 \, \text{J K}^{-1} \text{mol}^{-1} \) - \( S°(I_2) = 116.7 \, \text{J K}^{-1} \text{mol}^{-1} \) - \( S°(HI) = 206.3 \, \text{J K}^{-1} \text{mol}^{-1} \) Now, calculate ΔS°: \[ \Delta S° = [2 \times S°(HI)] - [S°(H_2) + S°(I_2)] \] Substituting the values: \[ \Delta S° = [2 \times 206.3] - [130.6 + 116.7] \] \[ \Delta S° = [412.6] - [247.3] = 165.3 \, \text{J K}^{-1} \text{mol}^{-1} \] ### Step 2: Convert ΔH° to J/mol The given ΔH° is: \[ \Delta H° = 51.9 \, \text{kJ mol}^{-1} = 51.9 \times 10^3 \, \text{J mol}^{-1} = 51900 \, \text{J mol}^{-1} \] ### Step 3: Use the Gibbs Free Energy Equation Now we can calculate ΔG° using the temperature T = 298 K (room temperature): \[ \Delta G° = \Delta H° - T \Delta S° \] Substituting the values: \[ \Delta G° = 51900 \, \text{J mol}^{-1} - (298 \, \text{K} \times 165.3 \, \text{J K}^{-1} \text{mol}^{-1}) \] Calculating \( T \Delta S° \): \[ T \Delta S° = 298 \times 165.3 = 49283.4 \, \text{J mol}^{-1} \] Now substituting this back into the ΔG° equation: \[ \Delta G° = 51900 - 49283.4 = 2616.6 \, \text{J mol}^{-1} \] ### Step 4: Convert ΔG° to kJ/mol Finally, convert ΔG° to kJ/mol: \[ \Delta G° = \frac{2616.6}{1000} = 2.6166 \, \text{kJ mol}^{-1} \] ### Final Answer Thus, the standard free energy change for the reaction is: \[ \Delta G° \approx 2.62 \, \text{kJ mol}^{-1} \] ---

To calculate the standard free energy change (ΔG°) for the reaction: \[ H_2(g) + I_2(g) \rightarrow 2HI(g) \] we will use the Gibbs free energy equation: \[ \Delta G° = \Delta H° - T \Delta S° \] ...
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    MODERN PUBLICATION|Exercise Advanced Level Problems|15 Videos
  • THERMODYNAMICS

    MODERN PUBLICATION|Exercise Conceptual Questions -1|19 Videos
  • THERMODYNAMICS

    MODERN PUBLICATION|Exercise Unit Practice Test|12 Videos
  • STRUCTURE OF ATOM

    MODERN PUBLICATION|Exercise Unit Practice Test|13 Videos

Similar Questions

Explore conceptually related problems

Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) =- 206.8 J K^(-1) mol^(-1) .

Calculate the entropy change for the following reaction H_(2)(g) +CI_(2)(g) rarr 2HCI (g) at 298 K Given S^(Theta)H_(2) = 131 J K^(-1) mol^(-1), S^(Theta)CI_(2) = 233 J K^(-1) mol^(-1) , and S^(Theta) HCI = 187 J K^(-1) mol^(-1)

Calculate the free energy change for the following reaction at 300 K. 2CuO_((s)) rarr Cu_(2)O_((s))+(1)/(2)O_(2(g)) Given Delta H = 145.6 kJ mol^(-1) and Delta S = 116.JK^(-1) mol^(-1)

Calculate the equilibrium constant for the reaction : NO(g) + 1/2 O_(2)(g) iff NO_(2)(g) Given, Delta_(f)H^(@) at 298K : NO(g) = 90.4 kJ "mol"^(-1), NO_(2)(g) = 33.8 kJ "mol"^(-1) and DeltaS^(@) at 298 K = -70.8 J K^(-1) "mol"^(-1) , R = 8.31 J K^(-1) "mol"^(-1) .

Calculate the standard Gibbs energy change for the formation of propane at 298 K: 3C("graphite") + 4H_(2)(g) to C_(3)H_(8)(g) Delta_(f)H^(@) for propane, C_(3)H_(8)(g) = -103.8 kJ mol^(-1) . Given : S_(m)^(0)[C_(3)H_(8)(g)] = 270.2 J K^(-1) "mol"^(-1) S_(m)^(@)("graphite") = 5.70 J K^(-1) "mol"^(-1) and S_(m)^(0)[H_(2)(g)] = 130.7 J K^(-1) "mol"^(-1) .

Calculate the entropy of Br_(2)(g) in the reaction H_(2)(g)+Br_(2)(g)rarr2HBr(g), Delta S^(@)=20.1 JK^(-1) given, entropy of H_(2) and HBr is 130.6 and 198.5 J mol^(-1)K^(-1) :-

Using Delta_(f)H^(@) and S_(m)^(@) calculate the standard Gibbs energy of formation, Delta_(f)G^(@) for each following : (a) CS_(2)(l) (b) N_(2)H_(4)(l) Delta_(f)H^(@)(CS_(2)) = 89.70 kJ "mol"^(-1), Delta_(r)S^(@)(CS_(2)) = 151.34 J K^(-1) "mol"^(-1) Delta_(f)H^(@)(N_(2)H_(4)) = 50.63 kJ "mol"^(-1) , Delta_(r)S^(@)N_(2)H_(2) = 121.21 J K^(-1) "mol"^(-1) .

Calculate the entropy changes for the following reactions : (i) 2CO(g) + O_(2)(g) to 2CO_(2)(g) (ii) 2H_(2)(g) + O_(2)(g) to 2H_(2)O(l) Entropies of different compounds are : CO(g) = 197.6 J K^(-1) "mol"^(-1), O_(2)(g) = 205.03 J K^(-1) "mol"^(-1) CO_(2)(g) = 213.6 JK^(-1) "mol"^(-1), H_(2)(g) = 130.6 J K^(-1) "mol"^(-1) H__(2)O(l) = 69.96 J K^(-1) "mol"^(-1)

MODERN PUBLICATION-THERMODYNAMICS-Practice Problems
  1. Calculate the Gibbs energy change on dissolving one mole of sodium chl...

    Text Solution

    |

  2. The value of DeltaH and DeltaS for two reactions are given below : R...

    Text Solution

    |

  3. At what temperature does the reduction of lead oxide to lead by carbon...

    Text Solution

    |

  4. For the reaction at 298 K 2A + B to C DeltaH = 40 kJ "mol"^(-1) a...

    Text Solution

    |

  5. Consider the reaction: 2NO(g)+O(2)(g) rarr 2NO(2)(g) Calculated th...

    Text Solution

    |

  6. Calculate the Delta(r)G^(@) for the reaction: C(6)H(12)O(6)(s) + 6O(...

    Text Solution

    |

  7. Calculate DeltaG^(@) for the reaction NO(g) iff 1/2 N(2)(g) + 1/2 O(...

    Text Solution

    |

  8. The equilibrium constant for the reaction CO(2)(g) +H(2)(g) hArr CO(...

    Text Solution

    |

  9. Calculated the equilibrium constant for the following reaction at 298K...

    Text Solution

    |

  10. The equilibrium constant for the reaction: CH(3)COOH(l) + C(2)H(5)OH...

    Text Solution

    |

  11. Calculate the entropy change for a reaction: XrarrY Given that Del...

    Text Solution

    |

  12. Calculate the equilibrium constant for the following reaction at 298K ...

    Text Solution

    |

  13. For the equilibrium reaction : 2H(2)(g) + O(2)(g) iff 2H(2)O(l) at 298...

    Text Solution

    |

  14. Calculate the equilibrium constant for the reaction : NO(g) + 1/2 O(2)...

    Text Solution

    |

  15. DeltaH^(Theta) and DeltaS^(Theta) for the reaction: Br(2)(l) +CI(2)(...

    Text Solution

    |

  16. Calculate the standard free energy change for the reaction : H(2)(g)...

    Text Solution

    |

  17. Calculate Delta(r)G^(@) for the reaction : CO(g) + 1/2O(2)(g) to CO(2)...

    Text Solution

    |

  18. Calculate the change of entropy, Delta(r)S^(Theta) at 298K for the rea...

    Text Solution

    |

  19. Calculate the standard molar entropy chnage for the following reaction...

    Text Solution

    |

  20. Using Delta(f)H^(@) and S(m)^(@) calculate the standard Gibbs energy o...

    Text Solution

    |