Home
Class 11
CHEMISTRY
Using Delta(f)H^(@) and S(m)^(@) calcula...

Using `Delta_(f)H^(@)` and `S_(m)^(@)` calculate the standard Gibbs energy of formation, `Delta_(f)G^(@)` for each following :
(a)`CS_(2)(l)`
(b) `N_(2)H_(4)(l)`
`Delta_(f)H^(@)(CS_(2)) = 89.70 kJ "mol"^(-1), Delta_(r)S^(@)(CS_(2)) = 151.34 J K^(-1) "mol"^(-1)`
`Delta_(f)H^(@)(N_(2)H_(4)) = 50.63 kJ "mol"^(-1)`, `Delta_(r)S^(@)N_(2)H_(2) = 121.21 J K^(-1) "mol"^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the standard Gibbs energy of formation (Δ_fG°) for the compounds CS₂ and N₂H₄, we will use the following relation: \[ \Delta_fG° = \Delta_fH° - T \Delta_rS° \] where: - Δ_fG° = standard Gibbs energy of formation - Δ_fH° = standard enthalpy of formation - T = temperature in Kelvin - Δ_rS° = standard entropy change ### Step-by-Step Solution: #### Part (a): For CS₂ (l) 1. **Identify Given Values:** - Δ_fH°(CS₂) = 89.70 kJ/mol - Δ_rS°(CS₂) = 151.34 J/K·mol 2. **Convert Δ_fH° from kJ to J:** \[ \Delta_fH°(CS₂) = 89.70 \, \text{kJ/mol} \times 1000 \, \text{J/kJ} = 89700 \, \text{J/mol} \] 3. **Use Room Temperature (T = 25°C):** \[ T = 25 + 273 = 298 \, \text{K} \] 4. **Calculate TΔ_rS°:** \[ T \Delta_rS°(CS₂) = 298 \, \text{K} \times 151.34 \, \text{J/K·mol} = 45000.32 \, \text{J/mol} \] 5. **Calculate Δ_fG° for CS₂:** \[ \Delta_fG°(CS₂) = \Delta_fH°(CS₂) - T \Delta_rS°(CS₂) \] \[ \Delta_fG°(CS₂) = 89700 \, \text{J/mol} - 45000.32 \, \text{J/mol} = 44699.68 \, \text{J/mol} \] 6. **Convert Δ_fG° back to kJ:** \[ \Delta_fG°(CS₂) = \frac{44699.68 \, \text{J/mol}}{1000} = 44.70 \, \text{kJ/mol} \] #### Part (b): For N₂H₄ (l) 1. **Identify Given Values:** - Δ_fH°(N₂H₄) = 50.63 kJ/mol - Δ_rS°(N₂H₄) = 121.21 J/K·mol 2. **Convert Δ_fH° from kJ to J:** \[ \Delta_fH°(N₂H₄) = 50.63 \, \text{kJ/mol} \times 1000 \, \text{J/kJ} = 50630 \, \text{J/mol} \] 3. **Use Room Temperature (T = 25°C):** \[ T = 25 + 273 = 298 \, \text{K} \] 4. **Calculate TΔ_rS°:** \[ T \Delta_rS°(N₂H₄) = 298 \, \text{K} \times 121.21 \, \text{J/K·mol} = 36000.58 \, \text{J/mol} \] 5. **Calculate Δ_fG° for N₂H₄:** \[ \Delta_fG°(N₂H₄) = \Delta_fH°(N₂H₄) - T \Delta_rS°(N₂H₄) \] \[ \Delta_fG°(N₂H₄) = 50630 \, \text{J/mol} - 36000.58 \, \text{J/mol} = 14629.42 \, \text{J/mol} \] 6. **Convert Δ_fG° back to kJ:** \[ \Delta_fG°(N₂H₄) = \frac{14629.42 \, \text{J/mol}}{1000} = 14.63 \, \text{kJ/mol} \] ### Final Results: - Δ_fG°(CS₂) = 44.70 kJ/mol - Δ_fG°(N₂H₄) = 14.63 kJ/mol

To calculate the standard Gibbs energy of formation (Δ_fG°) for the compounds CS₂ and N₂H₄, we will use the following relation: \[ \Delta_fG° = \Delta_fH° - T \Delta_rS° \] where: - Δ_fG° = standard Gibbs energy of formation ...
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS

    MODERN PUBLICATION|Exercise Advanced Level Problems|15 Videos
  • THERMODYNAMICS

    MODERN PUBLICATION|Exercise Conceptual Questions -1|19 Videos
  • THERMODYNAMICS

    MODERN PUBLICATION|Exercise Unit Practice Test|12 Videos
  • STRUCTURE OF ATOM

    MODERN PUBLICATION|Exercise Unit Practice Test|13 Videos

Similar Questions

Explore conceptually related problems

Calculate the standard Gibbs energy change for the formation of propane at 298 K: 3C("graphite") + 4H_(2)(g) to C_(3)H_(8)(g) Delta_(f)H^(@) for propane, C_(3)H_(8)(g) = -103.8 kJ mol^(-1) . Given : S_(m)^(0)[C_(3)H_(8)(g)] = 270.2 J K^(-1) "mol"^(-1) S_(m)^(@)("graphite") = 5.70 J K^(-1) "mol"^(-1) and S_(m)^(0)[H_(2)(g)] = 130.7 J K^(-1) "mol"^(-1) .

Calculate the standard Gibbs free energy change from the free energies of formation data for the following reaction: C_(6)H_(6)(l) +(15)/(2)O_(2)(g) rarr 6CO_(2)(g) +3H_(2)O(g) Given that Delta_(f)G^(Theta) =[C_(6)H_(6)(l)] = 172.8 kJ mol^(-1) Delta_(f)G^(Theta)[CO_(2)(g)] =- 394.4 kJ mol^(-1) Delta_(f)G^(Theta) [H_(2)O(g)] =- 228.6 kJ mol^(-1)

Calculate Deltah for the eaction BaCO_(3)(s)+2HCI(aq) rarr BaCI_(2)(aq)+CO_(2)(g)+H_(2)O(l) Delta_(f)H^(Theta) (BaCO_(3)) =- 290.8 kcal mol^(-1), Delta_(f)H^(Theta) (H^(o+)) =0 Delta_(f)H^(Theta) (Ba^(++)) = - 128.67 kcal mol^(-1) , Delta_(f)H^(Theta)(CO_(2)) =- 94.05 kcal mol^(-1) , Delta_(f)H^(Theta) (H_(2)O) =- 68.32 kcal mol^(-1)

Calculate the enthalpy of formation of KOH(s) from the following data : K(s) + H_(2)O(l) + (aq) to KOH(aq) + 1/2 H_(2)(g) Delta_(r)H^(@) = -200.8 kJ H_(2)(g) + 1/2 O_(2)(g) to H_(2)O(l) Delta_(r)H^(@) = - 286.3 kJ KOH(s) + (aq) to KOH(aq) Delta_(r)H^(@) = - 58.6 kJ

Calculate Delta_(r)S_("sys")^(@) for the following reaction at 373 K: CO(g) + H_(2)O(g) to CO_(2)(g) + H_(2)(g) Delta_(r)H^(@) = -4.1 xx 10^(4) J, Delta_(r)S^(@)("unv") = 56 J//K

Calculate Delta_(f)H^(@) for chloride ion from the following data: 1/2H_(2)(g) + 1/2CI_(2)(g) to HCI(g) Delta_(f)H^(@) = -92.8 kJ mol^(-1) HCI(g) + H_(2)O to H_(3)O^(+)(aq) + CI^(-)(aq) Delta_(diss) H^(@) = - 75.2 kJ mol^(-1) .

For a reaction, CaCO_(3(s)) rarr CaO_((s))+CO_(2(g)) Delta_(f)H^(@)(CaO)=-"631.1 kJ mol"^(-1) Delta_(f)H^(@)(CO_(2))=-"393.5 kJ mol"^(-1) and Delta_(f)H^(@)(CaCO_(3))=-"1206.9 kJ mol"^(-1) Which of the following is a correct statement?

MODERN PUBLICATION-THERMODYNAMICS-Practice Problems
  1. Calculate the Gibbs energy change on dissolving one mole of sodium chl...

    Text Solution

    |

  2. The value of DeltaH and DeltaS for two reactions are given below : R...

    Text Solution

    |

  3. At what temperature does the reduction of lead oxide to lead by carbon...

    Text Solution

    |

  4. For the reaction at 298 K 2A + B to C DeltaH = 40 kJ "mol"^(-1) a...

    Text Solution

    |

  5. Consider the reaction: 2NO(g)+O(2)(g) rarr 2NO(2)(g) Calculated th...

    Text Solution

    |

  6. Calculate the Delta(r)G^(@) for the reaction: C(6)H(12)O(6)(s) + 6O(...

    Text Solution

    |

  7. Calculate DeltaG^(@) for the reaction NO(g) iff 1/2 N(2)(g) + 1/2 O(...

    Text Solution

    |

  8. The equilibrium constant for the reaction CO(2)(g) +H(2)(g) hArr CO(...

    Text Solution

    |

  9. Calculated the equilibrium constant for the following reaction at 298K...

    Text Solution

    |

  10. The equilibrium constant for the reaction: CH(3)COOH(l) + C(2)H(5)OH...

    Text Solution

    |

  11. Calculate the entropy change for a reaction: XrarrY Given that Del...

    Text Solution

    |

  12. Calculate the equilibrium constant for the following reaction at 298K ...

    Text Solution

    |

  13. For the equilibrium reaction : 2H(2)(g) + O(2)(g) iff 2H(2)O(l) at 298...

    Text Solution

    |

  14. Calculate the equilibrium constant for the reaction : NO(g) + 1/2 O(2)...

    Text Solution

    |

  15. DeltaH^(Theta) and DeltaS^(Theta) for the reaction: Br(2)(l) +CI(2)(...

    Text Solution

    |

  16. Calculate the standard free energy change for the reaction : H(2)(g)...

    Text Solution

    |

  17. Calculate Delta(r)G^(@) for the reaction : CO(g) + 1/2O(2)(g) to CO(2)...

    Text Solution

    |

  18. Calculate the change of entropy, Delta(r)S^(Theta) at 298K for the rea...

    Text Solution

    |

  19. Calculate the standard molar entropy chnage for the following reaction...

    Text Solution

    |

  20. Using Delta(f)H^(@) and S(m)^(@) calculate the standard Gibbs energy o...

    Text Solution

    |