Home
Class 9
MATHS
In a triangle ABC, 3sinA + 4cosB = 6 and...

In a triangle ABC, 3sinA + 4cosB = 6 and 4sinB + 3cosA = 1. Find the measure of angle C.

Promotional Banner

Similar Questions

Explore conceptually related problems

If 3sinA +4cosA=4, " then find " 4sinA -3cosA .

If sinA+cosB=a and sinB+cosA=b then sin(A+B)=

In a triangle ABC, sinA+sinB+sinC=1+ sqrt2 and cosA+cosB+cosC= sqrt2 . The triangle is

[ln a Delta ABC,],sinA=4/5 then cosA=

If in a triangle ABC , (sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB then

In a triangleABC, sinA/4=sinB/5=sinC/6.Find the value of cos A + cosB+cos C.,

sinA+sinB= r3 (cosB−cosA). Find the value of sin3A+sin3B

If in a triangle ABC ,(sin A+sin B +sin C)(sinA+sinB-sin C)=3sinAsinB then angle C is equal to

In any triangle ABC, if (cosB+ 2 cosA)/(cos B + 2cosC ) = (sin C)/(sinA) then prove that, the triangle is either isosceles or right angled.

In triangle ABC ,right-angled at B if tanA=1/sqrt3 ,find the value of:(i)sinA cosC+cosA sinC