Home
Class 12
MATHS
(666 …. N digits)^(2) + (888 …. N digits...

`(666 …. N digits)^(2)` + (888 …. N digits ) =

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (666 …. "to n digits")^(2) + (888 …. To n digits ) = (444 … to 2n digits ).

(666 ..... ndigits) ^ (2) + (888 ..... ndigits) =

Show that (666 ...n "times")^(2) +(888.... N times) =(444.... 2n times).

STATEMENT -1: (666...n digit)^2+(888... ndigit)=(444....2ndigits) STATEMENT- 2 (111....1) 12 times is a prime number. (A) STATEMENT-1 is True, STATEMENT-2 is True ; STATEMENT-2 is a correct explanation for (B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for (C) STATEMENT-1 is True, STATEMENT-2 s False .n digits+ (888. digits) (44 .2n digits) 2 is a prime number 12 times n H.P., wherea STATEMENT-1 STATEMENT-1 STATEMENT-1 is False, STATEMENT-2 is True (D)

(666...n times)^2 +(888..n times) is equal to ___

Find the number of n digit numbers, which contain the digits 2 and 7, but not the digits 0, 1, 8, 9.

Find the number of n digit numbers, which contain the digits 2 and 7, but not the digits 0, 1, 8, 9.

Find the number of n digit numbers, which contain the digits 2 and 7, but not the digits 0, 1, 8, 9.

Find the number of n digit numbers, which contain the digits 2 and 7, but not the digits 0, 1, 8, 9.

Find the number of n digit numbers, which contain the digits 2 and 7, but not the digits 0, 1, 8, 9.