Home
Class 12
MATHS
" If "y=e^(3log x+2x)," Prove that "(dy)...

" If "y=e^(3log x+2x)," Prove that "(dy)/(dx)=x^(2)(2x+3)e^(2x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(3 log x+2x)," Prove that "(dy)/(dx)=x^(2) (2x+3) e^(2x) .

If y= e^(3 logx +2x , prove that dy/dx = x^2 (2x +3) e^(2x)

If y = e^(x + 3 log x) prove that dy/dx = x^2 (x+3) e^x

(dy)/(dx)=(x+e^(2x))/(y)

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

If y=x^(3)log((1)/(x)) , prove that (d^(2)y)/(dx^(2))-(2)/(x)(dy)/(dx)+3x=0 .

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))