Home
Class 11
MATHS
" (i) "1+(2)/(2)+(3)/(2^(2))+(4)/(2^(3))...

" (i) "1+(2)/(2)+(3)/(2^(2))+(4)/(2^(3))+......" to "n" terms."

Promotional Banner

Similar Questions

Explore conceptually related problems

Sum of the following series 1+(2)/(2)+(3)/(2^(2))+(4)/(2^(3))+... to n terms

((1)/(2) . (2)/(2))/(1^(3))+((2)/(3) . (3)/(2))/(1^(3)+2^(3)) +((3)/(2) . (4)/(2))/(1^(3)+2^(3)+3^(3))+.. . . to n terms

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(3))/(5!)+... upto n terms then the sum infinite terms is

((1)/(2), (2)/(2) )/(1^3) + ((2)/(2) , (3)/(2) )/( 1^3 + 2^3) + ((3)/(2) , (4)/(2) ) / (1^(3) + 2^(3) + 3^(3) ) + ..... n terms

1+(1+2)/(2)+(1+2+3)/(3) +(1+2+3+4)/(4)+.. . to n terms =

The sum of the series, (1)/(2.3) .2 + (2)/(3.4).2^(2) + (3)/(4.5).2^(3) + ….to n terms is

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is