Home
Class 11
MATHS
Let bar(a),bar(b),bar(c) are three non-c...

Let `bar(a),bar(b),bar(c)` are three non-coplanar vectors such that `bar(r)_(1)=bar(a)-bar(b)+bar(c);bar(r)_(2)=bar(b)+bar(c)-bar(a);bar(r)_(3)=bar(c)+bar(a)+bar(b),bar(r)=2bar(a)-3bar(b)+4bar(c)`.If `bar(r)=lambda_(1)bar(r)_(1)+lambda_(2)bar(r)_(2)+lambda_(3)bar(r)_(3)` then `lambda_(1)+lambda_(2)+lambda_(3)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If bar(a),bar(b),bar(c) are non-coplanar vectors such that then bar(b)xxbar(c)=bar(a),bar(c)xxbar(a)=bar(b) and bar(a)xxbar(b)=bar(c), then |bar(a)+bar(b)+bar(c)|=

If bar(a),bar(b),bar(c) are three non zero vectors,then bar(a).bar(b)=bar(a).bar(c)rArr

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

bar(a),bar(b),bar(c) are three unit vectors such that bar(a)xx(bar(b)xxbar(c))(1)/(2)bar(b), then (bar(a),bar(b))=(bar(a),bar(c))=(bar(b),bar(c)), are non-collinear)

If bar(a),bar(b)andbar(c) are any three vectors, prove that (1) [bar(a)+bar(b) bar(b)+bar(c) bar(c)+bar(a)]=2[bar(a)bar(b)bar(c)] (2) [bar(a) bar(b)+bar(c) bar(a)+bar(b)+bar(c)]=0

If bar(a),bar(b),bar(c) are non - coplanar vectors, then show the vectors -bar(a)+3bar(b)-5bar(c),-bar(a)+bar(b)+bar(c) and 2bar(a)-3bar(b)+bar(c) are coplanar.

If bar(a),bar(b),bar(c) are any three vectors, prove that (1) [bar(a)+bar(b)" "bar(a)+bar(c)" "bar(b)]=[bar(a)" "bar(c)" "bar(b)] (2) [bar(a)-bar(b)" "bar(b)-bar(c)" "bar(c)-bar(a)]=0 .

If bara,barb,barc are non-coplanar vectors then [bar(a)+2bar(b)" "bar(a)+bar(c)" "bar(b)]=

if bar(a),bar(b),bar(c) are any three vectors then prove that [bar(a),bar(b)+bar(c),bar(a)+bar(b)+bar(c)]=0