Home
Class 12
MATHS
Length of perpendicular from z(0)=2+3i o...

Length of perpendicular from `z_(0)=2+3i` on the straight line `(1-2i)z+(1+2i)bar(z)+3=0`
A) `18/(2sqrt(5))`
B) `18/(sqrt(5))`
C) `19/(sqrt(5))`
D) `19/(2sqrt(5))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of perpendicular from z_(0)=2+3i on the straight line (1-2i)z+(1+2i)bar(z)+3=0 is

The length of perpendicular from the poit (1,-1,2) on the line (x+1)/2=(2-y)/3=(z+2)/4 is (A) 0 (B) sqrt(6) (C) sqrt(21) (D) none of these

the value of |((3-i sqrt(2))^(2))/(1+i2)| is equal to (i) (11)/(sqrt(5)) (ii) (18)/(sqrt(7)) (iii) (5)/(sqrt(11)) (iv) (13)/(sqrt(3))

((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

If |z-4/2z|=2 then the least of |z| is (A) sqrt)5)=-1 (B) sqrt(5)-2 (C) sqrt(5) (D) 2

If |z_(1)| = 2 and (1-i)z_(2) + (1+i)bar(z)_(2) = 8 sqrt(2) , then

((sqrt(3)+i sqrt(5))(sqrt(3)-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2))

If |z-4/z|=2 then the greatest value of |z| is (A) sqrt(5)-1 (B) sqrt(5)+1 (C) sqrt(5) (D) 2

The distance of the point (1,2,3) from the plane x+y-z=5 measured along the straight line x=y=z is 5sqrt(3)(2)10sqrt(3)(3)3sqrt(10)3sqrt(5)(5)2sqrt(5)

If z = (sqrt(5)+3i) , find z^(-1) .