Home
Class 12
MATHS
int(0)^(oo)x^(3)e^(-x^(2))dx=...

`int_(0)^(oo)x^(3)e^(-x^(2))dx=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: I_(n)=int_(0)^(oo)x^(2n+1)e^(-x^(2))dx=(n!)/(2),n in N

D) int_(0)^(oo)x^(5)e^(-x)dx

If int_(0)^(1)e^(-(x^(2)))dx=a, then find the value of int_(0)^(1)x^(2)e^(-(x^(2)))dx in terms of a

int_(0)^(oo)(a^(-x)-b^(-x))dx=

int_(0)^(oo)(a^(-x)-b^(-x))dx

int_(0)^(oo)((1)/(x^(2)+1))dx

If int_(0)^(oo) e^(-x^(2))dx=sqrt((pi)/(2))"then"int_(0)^(oo) e^(-ax^(2)) dx, a gt0 , s

int_(0)^(oo)e^(-x^(2))dx=(sqrtpi)/(2) then

int_(0)^(oo)(1)/(3+x^(2))dx

int_(3)^(oo)(3)/(x^(2)-1)dx