Home
Class 12
MATHS
Prove that: inttan^n x\ dx=1/(n-1)tan^("...

Prove that: `inttan^n x\ dx=1/(n-1)tan^("n"-1)x-inttan^(n-2)x\ dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: int tan^(n)xdx=(1)/(n-1)tan^(n-1)x-int tan^(n-2)xdx

Prove that: int tan^(n)xdx=(1)/(n-1)tan^(n-1)x-int tan^(n-2)xdx

inttan^(2)x" " dx=

inttan^2(2x-3)dx

inttan(sin^(-1)x)dx=

inttan^2x/(secx-1)dx=?

inttan^(2)((x)/(2))dx=

inttan^(-1)((2tanx)/(1-tan^(2)x))dx=

inttan^2x/(1+secx)dx=?

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .