Home
Class 11
MATHS
The vector vec (OA)=-2hat i+hat j+2 hat ...

The vector `vec (OA)=-2hat i+hat j+2 hat k` tum by a right angle about origin `(O)` so that it passes through `hat j+hat k,` then vector in new position is

Promotional Banner

Similar Questions

Explore conceptually related problems

The vector vec OA=-2hat i+hat j+2hat k tum by a right angle about origin (O) so that it passes through hat j+hat k, then vector in new position is

Vector vec OA=hat i+2hat j+2hat k turns through a right angle passing through the positive x-axis on the way.Show that the vector in its new position is (4hat i-hat j-hat k)/(sqrt(2))

Vectors vec A=hat i+hat j-2hat k and vec B=3hat i+3hat j-6hat k are

The position vectors of the points P and Q are 5 hat i+7 hat j- 2 hat k and -3 hat i+3 hat j+6 hat k respecively. The vector vec A=3 hat i-hat j+hat k passes through the point P and the vector vec B=-3 hat i+2 hat j+4 hat k passes through the point Q. A third vector 2 hat i+7 hat j- 5hat k intersects vectors vec A and vec B . Find the position vectors of the points of intersection

The position vector of the points Pa n dQ are 5 hat i+7 hat j-2 hat k and -3 hat i+3 hat j+6 hat k , respectively. Vector vec A=3 hat i- hat j+ hat k passes through point P and vector vec B=-3 hat i+2 hat j+4 hat k passes through point Q . A third vector 2 hat i+7 hat j-5 hat k intersects vectors Aa n dBdot Find the position vectors of points of intersection.

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k vec a=11 hat i , vec b=2 hat j- hat k , vec c=13 hat k vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

Show that the point A , B and C with position vectors vec a =3 hat i - 4 hat j -4 hat k = 2 hat i j + hat k and vec c = hat i - 3 hat j - 5 hat k , respectively from the vertices of a right angled triangle.

Let vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j= hat ka n d vec c= hat i+ hat j-2 hat k be three vectors. A vector in the plane of vec ba n d vec c , whose projection on vec a is of magnitude sqrt(2//3) , is a. 2 hat i+3 hat j-3 hat k b. 2 hat i-3 hat j+3 hat k c. -2 hat i- hat j+5 hat k d. 2 hat i+ hat j+5 hat k