Home
Class 12
MATHS
If int(2)/(1-x^(4))dx = k log[(1+x)/(1-x...

If `int(2)/(1-x^(4))dx = k log[(1+x)/(1-x)]+tan^(-1)x + c` then `k=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(1) cot^(-1)(1-x-x^(2))dx=k int_(0)^(1) tan^(-1)x dx , then k=

int_( If )^( If )(x+5)/(x^(2)+4x+6)dx=a log(x^(2)+4x+5)+b tan^(-1)(x+k)+c then (a,b,k)=

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :

int ((2x^(e)+ 3)dx)/((x^(2) -1)(x^(2) + 4)) = k log ((x+1)/(x-1)) +k (tan^(-) ((x)/(2))) , then k equals :

If int(1)/(cos^(2)x(1-4tan^(2)x))dx=K log|(1+2tan x)/(1-2tan x)|+c, then K=

If int(sin2x)/(sin^(4)x+cos^(4)x)dx=tan^(-1)(tan^kx)+c , then k is=

int(x^(6)-1)/(x^(2)+1)dx=(x^(5))/(5)-(x^(3))/(3)+x+k tan^(-1)x+C then k=

If int x log (1+x^(2))dx= phi (x) log (1+x^(2))+x(Psi)+C , then

int _(-1//2)^(1//2) cos x log ((1+x)/(1-x)) dx = k log 2 , then k equals