Home
Class 11
MATHS
Tangents are drawn from any point on the...

Tangents are drawn from any point on the hyperbola `(x^2)/9-(y^2)/4=1` to the circle `x^2+y^2=9` . Find the locus of the midpoint of the chord of contact.

Promotional Banner

Similar Questions

Explore conceptually related problems

Tangents are drawn from any point on the hyperbola (x^(2))/(9)-(y^(2))/(4)=1 to the circle x^(2)+y^(2)=9 .If the locus of the mid-point of the chord of contact is a a(x^(2)+y^(2))^(2)=bx^(2)-cy^(2) then the value of (a^(2)+b^(2)+c^(2))/(7873)

Tangents are drawn from points on the hyperbola x^(2)/9-y^(2)/4=1 to the circle x^(2)+y^(2)=9 . Then show that the locus of the mid point of the chord of contact is (x^(2)+y^(2))^(2)=81 (x^(2)/9-y^(2)/4)

If the angle between the tangents at the end points of the chords of the hyperbola (x^(2))/(9)-(y^(2))/(4)=1 is 90 then the locus of mid point of the chord of contact is

Tangents are drawn from any point on the ellipse (x^(2))/(9)+(y^(2))/(4)=1 to the circle x^(2)+y^(2)=1 and respective chord of contact always touches a conic 'C',then- -

Tangents are drawn from points on the line x+2y=8 to the circle x^(2)+y^(2)=16. If locus of mid-point of chord of contacts of the tangents is a circles S, then radius of circle S will be

Tangent are drawn from the point (3, 2) to the ellipse x^2+4y^2=9 . Find the equation to their chord of contact and the middle point of this chord of contact.

Tangent are drawn from the point (3, 2) to the ellipse x^2+4y^2=9 . Find the equation to their chord of contact and the middle point of this chord of contact.

Tangent are drawn from the point (3, 2) to the ellipse x^2+4y^2=9 . Find the equation to their chord of contact and the middle point of this chord of contact.