Home
Class 12
MATHS
The greatest value of the function f(...

The greatest value of the function `f(x)=2. 3^(3x)-3^(2x). 4+2. 3^x` in the interval `[-1,1]` is

Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    RESONANCE DPP|Exercise All Questions|4 Videos

Similar Questions

Explore conceptually related problems

The least value of the function f(x)=2.3^(3x)-4.(3)^(2)x+3.3^(x) in [-1,1] is

the value of the function f(x)=(x^(2)-3x+2)/(x^(2)+x-6) lies in the interval.

Find the greatest value of the function f(x)=(2)/sqrt(2x^(2)-4x+3)

The function f(x)=-2x^(3)+21x^(2)-60x+41 ,in the interval (-oo,1) ,

The function f(x)=-2x^(3)+21x^(2)-60x+41",in the interval "(-oo,1) ,

Verify Rolle's theorem for the function f(x)=x^(3)-3x^(2)+2x in the interval [0,2] .

The smallest value of the function f(x)=3|x+1|+|x|+3|x-1|+2|x-3|

Examine the validity of Lagrangel's mean value theorem for the function f(x)=x^(2/3) in the interval [-1,1] .

Examine the validity of Lagrangel's mean value theorem for the function f(x)=x^(2/3) in the interval [-1,1] .

The function f(x)=2x^(3)-15x^(2)+36x+1 is increasing in the interval