Home
Class 11
MATHS
Let Pi and Pi ' be the feet of the perpe...

Let `P_i` and `Pi '` be the feet of the perpendiculars drawn from the foci `Sa n dS '` on a tangent `T_i` to an ellipse whose length of semi-major axis is 20. If `sum_(i=0)^(10)(S P_i)(S^(prime)Pi ')=2560 ,` then the value of eccentricity is `1/5` (b) `2/5` (c) `3/5` (d) `4/5`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P_i and P_i ' be the feet of the perpendiculars drawn from the foci Sa n dS ' on a tangent T_i to an ellipse whose length of semi-major axis is 20. If sum_(i=0)^(10)(S P_i)(S^(prime)Pi ')=2560 , then the value of eccentricity is (a) 1/5 (b) 2/5 (c) 3/5 (d) 4/5

Let P_i and P_i ' be the feet of the perpendiculars drawn from the foci Sa n dS ' on a tangent T_i to an ellipse whose length of semi-major axis is 20. If sum_(i=0)^(10)(S P_i)(S^(prime)Pi ')=2560 , then the value of eccentricity is (a) 1/5 (b) 2/5 (c) 3/5 (d) 4/5

Let P_i and P_i ' be the feet of the perpendiculars drawn from the foci Sa n dS ' on a tangent T_i to an ellipse whose length of semi-major axis is 20. If sum_(i=0)^(10)(S P_i)(S^(prime)P_i ')=2560 , then the value of eccentricity is (a) 1/5 (b) 2/5 (c) 3/5 (d) 4/5

If (0, 3+sqrt5) is a point on the ellipse whose foci and (2, 3) and (-2, 3) , then the length of the semi - major axis is

If (0, 3+sqrt5) is a point on the ellipse whose foci and (2, 3) and (-2, 3) , then the length of the semi - major axis is

If I_(n)=int_(0)^(pi)x^(n). sin x dx then the value of I_(5)+ 20I_(3)=

Let d_1a n dd_2 be the length of the perpendiculars drawn from the foci Sa n dS ' of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 to the tangent at any point P on the ellipse. Then, S P : S^(prime)P= (a) d_1: d_2 (b) d_2: d_1 (c) d_1 ^2:d_2 ^2 (d) sqrt(d_1):sqrt(d_2)

Let d_1a n dd_2 be the length of the perpendiculars drawn from the foci Sa n dS ' of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 to the tangent at any point P on the ellipse. Then, S P : S^(prime)P= d_1: d_2 (b) d_2: d_1 d1 2:d2 2 (d) sqrt(d_1):sqrt(d_2)

Let d_1a n dd_2 be the length of the perpendiculars drawn from the foci Sa n dS ' of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 to the tangent at any point P on the ellipse. Then, S P : S^(prime)P= d_1: d_2 (b) d_2: d_1 d1 2:d2 2 (d) sqrt(d_1):sqrt(d_2)

The value of sin^(-1)(cos(33pi)/5) is (3pi)/5 (b) pi/(10) (c) pi/(10) (d) (7pi)/5