Home
Class 12
MATHS
" If "f(x)=4x^(3)-x^(2)-2x+1" and "g(x)=...

" If "f(x)=4x^(3)-x^(2)-2x+1" and "g(x)=[[min(40;0<=1<=x),:0<=x<=1],[3-x,1

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=4x^(3)-x^(2)-2x+1 and g(x)=min{f(t):0<=t<=x}:0<=x<=1 and g(x)=3-x:1<=x<=2 then g((1)/(4))+g((3)/(4))+g((5)/(4)) is (A)(7)/(4)(B)(9)/(4)(C)(13)/(4)(D)(5)/(2)

if f(x)=4x^(3)-x^(2)-2x+1 and g(x)={min{f(t):0<=t<=x;0<=x<=1,3-x:1} then g(1/4)+g(3/4)+g(5/4) is equal to

If f(x)=4x^3-x^2-2x+1 and g(x)={min f(t): 0<=t<=x; 0<=x<=1, 3-x : 1ltxle2} then g(1/4)+g(3/4)+g(5/4) is equal to

If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le x},, 0 le x le1),(3-x,, 1 lt x le 2):} and if lamda=g ((1)/(4))+g ((3)/(4))+g ((5)/(4)), then 2 lamda=

If f (x) = 4x ^(3) -x ^(2) -2x +1 and g (x) = {{:(min {f(t): 0 le t le x},, 0 le x le1),(3-x,, 1 lt x le 2):} and if lamda=g ((1)/(4))+g ((3)/(4))+g ((5)/(4)), then 2 lamda=

if f(x)=4x^3-x^2-2x+1 and g(x)={min f(t): 0<=t<=x; 0<=x<=1, 3-x : 1} then g(1/4)+g(3/4)+g(5/4) is equal to

if f(x)=4x^3-x^2-2x+1 and g(x)={min{f(t): 0<=t<=x; 0<=x<=1, 3-x when1 less x less than or equal 2} then g(1/4)+g(3/4)+g(5/4) is equal to

Let f(x) = -x^(3) + x^(2) - x + 1 and g(x) = {{:(min(f(t))",",0 le t le x and 0 le x le 1),(x - 1",",1 lt x le 2):} Then, the value of lim_(x rarr 1) g(g(x)) , is........ .

f(x)=4x^(3)-12x^(2)+14x-3,g(x)=2x-1