Home
Class 10
MATHS
" 9."tan^(-1)[(4sqrt(x))/(1-4x)]...

" 9."tan^(-1)[(4sqrt(x))/(1-4x)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Using a suitable substitution,find the derivative of tan ^(-1)((4sqrt(x))/(1-4x)) with respect to x.

If y = tan^(-1) ((4sqrt(x))/(1 - 4x))" then" (dy)/(dx) is

Differentiate tan^-1((4sqrt(x))/(1-4x))

Differentiate tan^-1((4sqrt(x))/(1-4x))

If for x(0,(1)/(4)), the derivative of tan^(-1)((6x sqrt(x))/(1-9x^(3))) is sqrt(x)g(x), then g(x) equals: (1)(3x)/(1-9x^(3))(2)(3)/(1+9x^(3))(3)(9)/(1+9x^(3)) (4) (3x sqrt(x))/(1-9x^(3))

If: tan^(-1) ((sqrt(1 + x^2)-1)/(x)) = 4 then : x =

Find (dy)/(dx) , when y="tan"^(-1)(sqrt(x)-4sqrt(x))/(1+4sqrt(x^(3)))

If for x in (0,1/4) , the derivation of tan^(-1)((6xsqrtx)/(1-9x^3)) is sqrt(xg(x) , then find g(x).

Prove that tan^(-1) ((1-sqrt(x))/(1+sqrt(x))) = pi/4 - tan^(-1) sqrt(x) , "where" x gt 0

Differentiate tan^(-1)((1+2x)/(1-2x))wdotrdottsqrt(1+4x^2) and tan^(-1)((sqrt(1+x^2)-1)/x) with respect to tan^(-1)(x)