Home
Class 12
MATHS
" Let "y=sin^(-1)((2^(x+1))/(1+4^(x)))=...

" Let "y=sin^(-1)((2^(x+1))/(1+4^(x)))=

Promotional Banner

Similar Questions

Explore conceptually related problems

If (sin x)^2 =x+y find (dy)/(dx) Find (dy)/(dx) if y=sin^(-1)[2^(x+1)/(1+4^x)]

Let f(x)=sin^(-1)((1)/(|x^(2)-1|))+cos^(-1)((1-2|x|)/(3))

Let f(x) = 2 tan^(-1)x + "sin"^(-1) (2x)/(1 + x^(2)) then

Let y=-(2^(1/x)-1)/(2^(1/x)+1) , then

Let y = (sin^(-1)x)^2+(cos^(-1)x)^2 show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=4

Let (x,y) be such that sin^(-1)(ax)+cos^(-1)y+cos^(-1)(bxy)=pi/2

sin^(-1)x+sin^(-1)y=cos^(-1)""{sqrt((1-x^(2))(1-y^(2)))-xy}

Let y=((3^(x)-1)/(3^(x)+1))sin x+log_(e)(1+x),x>1 then at x=0,(dy)/(dx)=