Home
Class 12
MATHS
" (0) "tan^(-1)((x)/(sqrt(a^(2)-x^(2))))...

" (0) "tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)(tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

Prove that tan^(-1)((x)/(sqrt(a^(2)-x^(2))))="sin"^(-1)(x)/(a)=cos^(-1)((sqrt(a^(2)-x^(2)))/(a)) .

The simplest form of tan^(-1)((x)/(a+sqrt(a^(2)-x^(2)))) is :

Write tan^(-1)((x)/(sqrt(a^(2)-x^(2)))) in simplest form.

Write the following functions in the simplest form : "tan"^(-1)(x)/(sqrt(a^(2)-x^(2))),|x|lta

Differentiate the following function with respect to x:tan^(-1){(x)/(sqrt(a^(2)-x^(2)))}-a

Write the following in the simplest form: tan^(-1)(x/(sqrt(a^(2)-x^(2)))),|x|lta

Write the following functions in the simplest form: tan^(-1){(x)/(sqrt(a^(2)-x^(2)))}

Prove that tan^(-1){(x)/(a+sqrt(a^(2)-x^(2)))}=(1)/(2)(sin^(-1)x)/(a),-a

Find tan^(-1). (x)/(sqrt(a^(2) - x^(2))) in terms of sin^(-1) , where x in (0, a)