Home
Class 12
MATHS
(1^4)/1.3+(2^4)/3.5+(3^4)/5.7+......+n^4...

`(1^4)/1.3+(2^4)/3.5+(3^4)/5.7+......+n^4/((2n-1)(2n+1))=(n(4n^2+6n+5))/48+n/(16(2n+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that 1^4/13+2^4/3.5+3^4/5.7+.....+n^4/((2n-1)(2n+1))=(n(4n^2+6n+5))/48+n/(16(2n+1)) .

1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^(2)+6n-1))/(3)

Prove that 1.3+3.5+5.7+......+(2n-1)(2n+1)=(n(4n^2+6n-1))/3

Find the sum (1^4)/(1xx3)+(2^4)/(3xx5)+(3^4)/(5xx7)+......+(n^4)/((2n-1)(2n+1))

Find the sum (1^4)/(1xx3)+(2^4)/(3xx5)+(3^4)/(5xx7)+......+(n^4)/((2n-1)(2n+1))

Find the sum (1^(4))/(1xx3)+(2^(4))/(3xx5)+(3^(4))/(5xx7)+......+(n^(4))/((2n-1)(2n+1))

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.2.3)+ (1)/(2.3.4)+ (1)/(3.4.5)+....+ (1)/(n(n+1)(n+2))= (n(n+3))/(4(n+1)(n+2))

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.2.3)+ (1)/(2.3.4)+ (1)/(3.4.5)+....+ (1)/(n(n+1)(n+2))= (n(n+3))/(4(n+1)(n+2))

1.2.3+2.3.4+....+n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/4

1.4+2.5+.......+n(n+3)=