Home
Class 12
MATHS
AB is a chord of y^2=4x such that normal...

`AB` is a chord of `y^2=4x` such that normals at `A` and `B` intersect at `C(9,6)`

Promotional Banner

Similar Questions

Explore conceptually related problems

AB is a chord of the parabola y^(2)=4ax such that the normals at A and B intersect at the point C(9a, 6a). If the area of triangle ABC is 320m^(2) , then a is _________

AB is a chord of the circle x^(2)+y^(2)=9 .The tangents at A and B intersect at C. If M(1,2) is the midpoint of AB,then the area of triangle ABC is

AB is a chord of the circle x^(2)+y^(2)=25. The tangents of A and B intersect at C. If (2,3) is the mid-point of AB,then area of the quadrilateral OACB is

A circle S having centre (alpha, beta) intersect at three points A, B and C such that normals at A,B and C are concurrent at (9,6) for parabola y^(2)=4x and O origin. Then,

The line x-y=1 intersects the parabola y^2=4x at A and B . Normals at Aa n dB intersect at Cdot If D is the point at which line C D is normal to the parabola, then the coordinates of D are (4,-4) (b) (4,4) (-4,-4) (d) none of these

The line x-y=1 intersects the parabola y^2=4x at A and B . Normals at Aa n dB intersect at Cdot If D is the point at which line C D is normal to the parabola, then the coordinates of D are (4,-4) (b) (4,4) (-4,-4) (d) none of these