Home
Class 12
MATHS
" 8.If "int(log2)^(x)(1)/(sqrt(e^(x)-1))...

" 8.If "int_(log2)^(x)(1)/(sqrt(e^(x)-1))dx=(pi)/(6)" .Find "x

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(log2)^(x) (1)/(sqrt(e^(x)-1))dx=(pi)/(6) then x is equal to

int_(log2)^(t)(dx)/(sqrt(e^(x)-1))=(pi)/(6) , then t=

If int_(log2)^(x)(dx)/(sqrt(e^(x)-1))=(pi)/(6), then x is equalto 4 (b) ln8(c)ln4(d) none of these

If : int_(ln 2)^(x)(1)/(sqrt(e^(t)-1))dt=(pi)/(6) , then : x =

If int_(log2)^(a)(e^(x))/(sqrt(e^(x)-1))dx=2 then a=

If int_(log2)^(a)(e^(x))/(sqrt(e^(x)-1))dx=2 then a=

If int(log 2)^(x) (dy)/(sqrt(e^(y) -1)) = (pi)/(6) , prove that x = log 4

If int_(log 2)^(x)(du)/((e^(u)-1)^(1//2))=(pi)/(6) , then e^(x) is equal to

int_(1)^(e )(1)/(x sqrt(log x))dx=