Home
Class 12
MATHS
" Wisa Solve the equation "log(3/4)log(8...

" Wisa Solve the equation "log_(3/4)log_(8)(x^(2)+7)+log_(1/2)log_(1/4)(x^(2)+7)^(-1)=-2" .[REE-2000,5] "

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve log_(3/4)log_8(x^2+7)+log_(1/2)log_(1/4)(x^2+7)^(-1)=-2 .

Solve the equation: log_(2)x+log_(4)(x+2)=2

Solve the equation log_(4)(2x^(2)+x+1)-log_(2)(2x-1)=1

solve the equation x^((3)/(4)(log_(2)x)^(2)+log_(2)x-(5)/(4))=sqrt(2)

Solve the equation log_(1//3)[2(1/2)^(x)-1]=log_(1//3)[(1/4)^(x)-4]

Solve the equation log_(1/3)[2(1/2)^(x)-1]=log_(1/3)[(1/4)^(x)-4]

Solve the equation log_(1//3)[2(1/2)^(x)-1]=log_(1//3)[(1/4)^(x)-4]

Solve the equation log_(1//3)[2(1/2)^(x)-1]=log_(1//3)[(1/4)^(x)-4]

Solve the equation log_(1//3)[2(1/2)^(x)-1]=log_(1//3)[(1/4)^(x)-4]

Solve the equation log_((x^(3)+6))(x^(2)-1)=log_((2x^(2)+5x))(x^(2)-1)