Home
Class 12
MATHS
If origin is the orthocenter of a triang...

If origin is the orthocenter of a triangle formed by the points `(cosalpha * sinalpha,0).(cos beta, sin beta.0),(cosgamma, sin gamma,0)` then `sum cos( 2alpha - beta-gamma)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If origin is the orthocenter of a triangle formed by the points (cos alpha*sin alpha,0)*(cos beta,sin beta.0),(cos gamma,sin gamma,0) then sum cos(2 alpha-beta-gamma)=

If origin is the orthocentre of a triangle formed bythe points (cos alpha, sin alpha,0), (cos beta, sin beta,0), (cos gamma, sin gamma,0) then sumcos(2alpha-beta-gamma)= -

The orthocentre of triangle formed by (a cos alpha,a sin alpha),(a cos beta,a sin beta),(a cos gamma,a sin gamma) is

If (0,0) is orthocentre of triangle formed by A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then /_BAC=

If (0,0) is orthocentre of triangle formed by A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then /_BAC is

If origin is the orthocentre of the triangle with vertices A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then cos(2 alpha-beta-gamma)+cos(2 beta-gamma-alpha)+cos(2 gamma-alpha-beta)=

If ("Cos"alpha, "Sin"alpha,0),(cos beta, sin beta,0), (cos gamma, sin gamma, 0) are vertices of a triangle then circum radius R is