Home
Class 12
MATHS
(x^(m-1))/(sqrt(1-x^(m)))...

(x^(m-1))/(sqrt(1-x^(m)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If the antiderivative of (x^(3))/(sqrt(1+2x^(2))) which passes through (1,2) is (1)/(m)(1+2x^(2))^((1)/(2))(x^(2)-1)+2, then the value of m is

If greatest and least values of f(x)=sin^(-1)((x)/(sqrt(x^(2)+1)))-ln x in [(1)/(sqrt(3)),sqrt(3)] are M &m respectively,then M+m=ln3+(pi)/(6)(b)M-m=ln3-(pi)/(6)M+m=(pi)/(2)(d)M-m=ln3-(pi)/(3)

Find the value of int((x^m-1)dx)/(x^(m+1)sqrt(1-2x^m+mx^(2m))) (A) sqrt(m+2/x^m+1/x^(2m)+c) (B) sqrt(m-2/x^m+1/x^(2m)+c) (C) sqrt(m-2/x^m-1/x^(2m)+c) (D) sqrt(m+2/x^m-1/x^(2m)+c)

If the maximum and minimum values of (sin x)/(sqrt(1-cos^(2)))+(cos x)/(sqrt(1-sin^(2)x))+(tan x)/(sqrt(sec^(2)x-1))+(cot x)/(sqrt(cos ec^(2)-1)) when it is defined are M and m respectively then the values of M-m is

find the value of m,(sqrt(m+1)+sqrt(m-1))/(sqrt(m+1)-sqrt(m-1))=2m-(1)/(2)

If int(sqrt(1-x^(2)))/(x^(4))dx=A(x)*(sqrt(1-x^(2)))^(m) where A(x) is a function of x then (A(x))^(m)= (A) -(1)/(27x^(9))(B)(1)/((27x)^(9))(C)(1)/(3x^(9))(D)-(1)/(3x^(9))

If m is a non-zero number and int (x^(5m-1)+2x^(4m-1))/((x^(2m)+x^(m)+1)^(3))dx=f(x)+c , then f(x) is