Home
Class 12
PHYSICS
जब दो प्रगामी तरंगे y(1) = 4 sin (2x-6t)...

जब दो प्रगामी तरंगे `y_(1) = 4 sin (2x-6t)` तथा `y_(2) = 3 sin (2x-6t - (pi)/(2))` अध्यारोपित होती है तो परिणामी तरंग का आयाम कितना होगा ?

Promotional Banner

Similar Questions

Explore conceptually related problems

When two progressive waves y_(1) = 4 sin (2x - 6t) and y_(2) = 3 sin (2x - 6t - (pi)/(2)) are superimposed, the amplitude of the resultant wave is

When two progressive waves y_(1) = 4 sin (2x - 6t) and y_(2) = 3 sin (2x - 6t - (pi)/(2)) are superimposed, the amplitude of the resultant wave is

When two progressive waves y_(1) = 4 sin (2x - 6t) and y_(2) = 3 sin (2x - 6t - (pi)/(2)) are superimposed, the amplitude of the resultant wave is

When two progressive waves y_(1) = 4 sin (2 x - 6t) and y_(2) = 3 sin (2x - 6t -(pi)/(2)) are superposed, the amplitude of the resultant wave is

x=2 cos^2 t, y= 6 sin ^2 t

If x = sin t. cos 2t, y = cost sin 2t then dy/dx at t = pi/4 is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is

If x= sin t and y= sin^(3)t , then (d^(2)y)/(dx^(2)) at t=pi/2 is