Home
Class 14
MATHS
Simplify (a^(4)b^(5//3))^(-3//4)....

Simplify `(a^(4)b^(5//3))^(-3//4)`.

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((a^{4}b^{\frac{5}{3}})^{-\frac{3}{4}}\), we will follow these steps: ### Step 1: Apply the Power of a Product Rule Using the rule \((xy)^m = x^m y^m\), we can split the expression: \[ (a^{4}b^{\frac{5}{3}})^{-\frac{3}{4}} = a^{4 \cdot -\frac{3}{4}} \cdot b^{\frac{5}{3} \cdot -\frac{3}{4}} \] ### Step 2: Simplify the Exponents Now we will calculate the exponents: 1. For \(a\): \[ 4 \cdot -\frac{3}{4} = -3 \] 2. For \(b\): \[ \frac{5}{3} \cdot -\frac{3}{4} = -\frac{5}{4} \] So, we have: \[ a^{-3} \cdot b^{-\frac{5}{4}} \] ### Step 3: Rewrite with Positive Exponents To express the negative exponents as positive, we use the property \(x^{-n} = \frac{1}{x^n}\): \[ a^{-3} = \frac{1}{a^{3}} \quad \text{and} \quad b^{-\frac{5}{4}} = \frac{1}{b^{\frac{5}{4}}} \] Thus, we can rewrite the expression as: \[ \frac{1}{a^{3}b^{\frac{5}{4}}} \] ### Final Answer The simplified form of the expression \((a^{4}b^{\frac{5}{3}})^{-\frac{3}{4}}\) is: \[ \frac{1}{a^{3}b^{\frac{5}{4}}} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise EXERCISE BASE LEVEL QUESTIONS|43 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

Simplify : (-4)^3

Simplify: (-4(5)/(6))+(-7(3)/(4))

Simplify : (-5)^(4) xx (-5)^(3)

Simplify : 3xx4^4

Simplify (256)^(3//4) .

Simplify [(2)/(5)]^(4)((25)/(8))^(3)((125)/(4))^2

Simplify (4a+2b)^(3)+(4a-2b)^(3) .

Simplify (5)/(11)+4(3)/(9)

Simplify : 2(3)/(4)-1(5)/(6)