Home
Class 14
MATHS
Find the value of sqrt80+3sqrt245-sqrt12...

Find the value of `sqrt80+3sqrt245-sqrt125`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{80} + 3\sqrt{245} - \sqrt{125} \), we will simplify each square root term step by step. ### Step 1: Simplify \( \sqrt{80} \) 1. **Prime Factorization**: \[ 80 = 16 \times 5 = 4^2 \times 5 \] 2. **Square Root**: \[ \sqrt{80} = \sqrt{16 \times 5} = \sqrt{16} \times \sqrt{5} = 4\sqrt{5} \] ### Step 2: Simplify \( 3\sqrt{245} \) 1. **Prime Factorization**: \[ 245 = 49 \times 5 = 7^2 \times 5 \] 2. **Square Root**: \[ \sqrt{245} = \sqrt{49 \times 5} = \sqrt{49} \times \sqrt{5} = 7\sqrt{5} \] 3. **Multiply by 3**: \[ 3\sqrt{245} = 3 \times 7\sqrt{5} = 21\sqrt{5} \] ### Step 3: Simplify \( \sqrt{125} \) 1. **Prime Factorization**: \[ 125 = 25 \times 5 = 5^2 \times 5 \] 2. **Square Root**: \[ \sqrt{125} = \sqrt{25 \times 5} = \sqrt{25} \times \sqrt{5} = 5\sqrt{5} \] ### Step 4: Combine the Terms Now we can substitute back into the original expression: \[ \sqrt{80} + 3\sqrt{245} - \sqrt{125} = 4\sqrt{5} + 21\sqrt{5} - 5\sqrt{5} \] ### Step 5: Combine Like Terms Combine the coefficients of \( \sqrt{5} \): \[ (4 + 21 - 5)\sqrt{5} = 20\sqrt{5} \] ### Final Answer Thus, the value of \( \sqrt{80} + 3\sqrt{245} - \sqrt{125} \) is: \[ \boxed{20\sqrt{5}} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise EXERCISE BASE LEVEL QUESTIONS|43 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

Find the value of sqrt(18)xx sqrt(3)

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

Find the value of sqrt(3+sqrt(5))-sqrt(2+sqrt(3))

Find the value of sqrt 10+sqrt 25+sqrt 108+sqrt 169

If sqrt(15)= 3.87 find the value of sqrt3/sqrt5

Find the value of (sqrt(sqrt(5)+sqrt(2))+sqrt(sqrt(5)-sqrt(2)))/(sqrt(sqrt(5)+sqrt(3)))

Find the value of 3sqrt(sqrt(50)+7)-3sqrt(sqrt(50)-7)

Find the value of sqrt(sqrt(sqrt(0.00000256)))