Home
Class 14
MATHS
Find the fraction equivalent to 5/(2-sqr...

Find the fraction equivalent to `5/(2-sqrt3)`, such that denominator of the fraction is not irrational.

Text Solution

AI Generated Solution

The correct Answer is:
To find the fraction equivalent to \( \frac{5}{2 - \sqrt{3}} \) such that the denominator is not irrational, we will use the method of rationalization. Here’s the step-by-step solution: ### Step 1: Identify the expression We start with the expression: \[ \frac{5}{2 - \sqrt{3}} \] ### Step 2: Multiply by the conjugate To eliminate the irrational part in the denominator, we multiply both the numerator and the denominator by the conjugate of the denominator, which is \( 2 + \sqrt{3} \): \[ \frac{5}{2 - \sqrt{3}} \cdot \frac{2 + \sqrt{3}}{2 + \sqrt{3}} \] ### Step 3: Simplify the numerator Now, we multiply the numerators: \[ 5 \cdot (2 + \sqrt{3}) = 10 + 5\sqrt{3} \] ### Step 4: Simplify the denominator Next, we simplify the denominator using the difference of squares formula: \[ (2 - \sqrt{3})(2 + \sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] ### Step 5: Combine the results Now we can combine the results: \[ \frac{10 + 5\sqrt{3}}{1} = 10 + 5\sqrt{3} \] ### Final Result Thus, the fraction equivalent to \( \frac{5}{2 - \sqrt{3}} \) with a rational denominator is: \[ 10 + 5\sqrt{3} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise EXERCISE BASE LEVEL QUESTIONS|43 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

Write a fraction equivalent to (20)/(36) with denominator 9.

Write a fraction equivalent to (5)/(8) with denominator 56.

Find the fraction equivalent to 35/42 having denominator 30.

Find the equivalent fraction of (15)/(35) with denominator 7.

Find the fraction equivalent of (35)/(42), having: numerator 15 (ii) denominator 18 denominator 30 (iv) numerator 30

Find the fraction equivalent to (45)/(60), having: numerator 15 (ii) denominator 4 denominator 240 (iv) numerator 135

Find the equivalent fraction of (2)/(9) with denominator 63.

Find the equivalent fraction of (3)/(5) having denominator 30.

ARIHANT SSC-INDICES AND SURDS-HIGHER SKILL LEVEL QUESTIONS
  1. Find the fraction equivalent to 5/(2-sqrt3), such that denominator of ...

    Text Solution

    |

  2. What is the quotient when (x^(-1)-1) is divided by (x-1)?

    Text Solution

    |

  3. Simplify [root(3)(root(6)(2^(9)))]^(4)xx[root(6)(root(3)(2^(9)))]^(4).

    Text Solution

    |

  4. Arrange root(4)(3),root(6)(10),root(12)(25) in descending order.

    Text Solution

    |

  5. If a=(sqrt(3))/2 , then sqrt(1+a)+sqrt(1-a)=? (2-sqrt(3)) (b) (2+sqrt...

    Text Solution

    |

  6. Simplify (6a^(-2)bc^(-3))/(4ab^(-3)c^(2))/(5a^(-3)b^(2)c^(-1))/(3ab^(-...

    Text Solution

    |

  7. If m=7-4sqrt3,"then "(sqrtm+1/sqrtm)=?

    Text Solution

    |

  8. Simplify 6sqrt((27)^(-2/3)+(8)^(-2/3))

    Text Solution

    |

  9. If 2x^(1//3)/(2x^(-1//3))=5,"then "x^(1//3) is equal to

    Text Solution

    |

  10. (1/64)^(0)+(64)^(-1/2)+(32)^(4/5)-(32)^(-4/5)=?

    Text Solution

    |

  11. Which one is greatest out of sqrt2,root(6)(3),root(3)(4)androot(4)(5)?

    Text Solution

    |

  12. If 2^a=3^b=6^(-c), then prove that (1)/(a)+(1)/(b)+(1)/(c )=0.

    Text Solution

    |

  13. Value of 1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+....+1/(sqrt100+s...

    Text Solution

    |

  14. If ((2^(n+4)-2.2^(n))/(2.2^(n+3) )+ 2^(-3) )=x, then the value of x...

    Text Solution

    |

  15. Find the value of m - n, if (9^(n)xx3^(2)xx(3^((-n)/2))^(-2)-(27)^(n...

    Text Solution

    |

  16. If (5+2sqrt3)/(7+4sqrt3)=a+bsqrt3, then the value of a and b is

    Text Solution

    |

  17. Find the value of (a^(p)/a^(q))^(p+q-r)xx(a^(r)/a^(p))^(r+p-q)xx(a^(q)...

    Text Solution

    |

  18. If 2^(P)+3^(q)=17and2^(P+2)-3^(q+1)=5, then find the value of p and q.

    Text Solution

    |