Home
Class 14
MATHS
(sqrt5+sqrt3)/(sqrt5-sqrt3)=...

`(sqrt5+sqrt3)/(sqrt5-sqrt3)=`

Text Solution

Verified by Experts

The correct Answer is:
`4+sqrt15`
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise EXERCISE BASE LEVEL QUESTIONS|43 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

Rationalise the denominator of the following (i) 2/(3sqrt3) , (ii) sqrt40/sqrt3 ,(iii) (3+sqrt2)/(4sqrt2) (iv) 16/(sqrt41-5) ,(v) (2+sqrt3)/(2-sqrt3) , (vi) sqrt6/(sqrt2+sqrt3) (vii) (sqrt3+sqrt2)/(sqrt3-sqrt2) ,(viii) (3sqrt5+sqrt3)/(sqrt5-sqrt3) , (ix) (4sqrt3+5sqrt2)/(sqrt48+sqrt18)

2/(sqrt5 - sqrt3)

(sqrt3-sqrt5)(sqrt5+sqrt3)

Simplify (sqrt5 - sqrt3)(sqrt5 + sqrt 3)

(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

simplify (sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))-(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))

If 2sqrt(x)=(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))-(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), then the value of x is :