Home
Class 14
MATHS
Find the value of sqrt(6+sqrt(6+sqrt(6+....

Find the value of `sqrt(6+sqrt(6+sqrt(6+...oo)))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sqrt{6 + \sqrt{6 + \sqrt{6 + \ldots}}} \), we can follow these steps: ### Step 1: Set up the equation Let \( y = \sqrt{6 + \sqrt{6 + \sqrt{6 + \ldots}}} \). This means that \( y \) is equal to the entire expression. ### Step 2: Square both sides To eliminate the square root, we square both sides of the equation: \[ y^2 = 6 + \sqrt{6 + \sqrt{6 + \ldots}} \] Since the right side is the same as \( y \), we can rewrite the equation as: \[ y^2 = 6 + y \] ### Step 3: Rearrange the equation Now, rearranging the equation gives us a standard quadratic form: \[ y^2 - y - 6 = 0 \] ### Step 4: Apply the quadratic formula To solve for \( y \), we can use the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] In our equation, \( a = 1 \), \( b = -1 \), and \( c = -6 \). Plugging these values into the formula gives: \[ y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-6)}}{2 \cdot 1} \] This simplifies to: \[ y = \frac{1 \pm \sqrt{1 + 24}}{2} \] \[ y = \frac{1 \pm \sqrt{25}}{2} \] ### Step 5: Simplify the square root Since \( \sqrt{25} = 5 \), we have: \[ y = \frac{1 \pm 5}{2} \] ### Step 6: Calculate the possible values of \( y \) This gives us two possible solutions: 1. \( y = \frac{1 + 5}{2} = \frac{6}{2} = 3 \) 2. \( y = \frac{1 - 5}{2} = \frac{-4}{2} = -2 \) ### Step 7: Determine the valid solution Since \( y \) represents a length (the value of the square root), it must be non-negative. Therefore, we discard \( y = -2 \). Thus, the value of \( \sqrt{6 + \sqrt{6 + \sqrt{6 + \ldots}}} \) is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise EXERCISE BASE LEVEL QUESTIONS|43 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

Find the value of sqrt(6 - sqrt35)

Evaluate x=sqrt(6+sqrt(6+sqrt(6+...oo)))

Find the value of sqrt(1.6) times sqrt(1.6)

Find the value of: sqrt(6+sqrt(6+sqrt(6+backslash)))

What is the value of (sqrt(6)+sqrt(5))/(sqrt(6)-sqrt(5)) ?

ARIHANT SSC-INDICES AND SURDS-HIGHER SKILL LEVEL QUESTIONS
  1. Find the value of sqrt(6+sqrt(6+sqrt(6+...oo)))

    Text Solution

    |

  2. What is the quotient when (x^(-1)-1) is divided by (x-1)?

    Text Solution

    |

  3. Simplify [root(3)(root(6)(2^(9)))]^(4)xx[root(6)(root(3)(2^(9)))]^(4).

    Text Solution

    |

  4. Arrange root(4)(3),root(6)(10),root(12)(25) in descending order.

    Text Solution

    |

  5. If a=(sqrt(3))/2 , then sqrt(1+a)+sqrt(1-a)=? (2-sqrt(3)) (b) (2+sqrt...

    Text Solution

    |

  6. Simplify (6a^(-2)bc^(-3))/(4ab^(-3)c^(2))/(5a^(-3)b^(2)c^(-1))/(3ab^(-...

    Text Solution

    |

  7. If m=7-4sqrt3,"then "(sqrtm+1/sqrtm)=?

    Text Solution

    |

  8. Simplify 6sqrt((27)^(-2/3)+(8)^(-2/3))

    Text Solution

    |

  9. If 2x^(1//3)/(2x^(-1//3))=5,"then "x^(1//3) is equal to

    Text Solution

    |

  10. (1/64)^(0)+(64)^(-1/2)+(32)^(4/5)-(32)^(-4/5)=?

    Text Solution

    |

  11. Which one is greatest out of sqrt2,root(6)(3),root(3)(4)androot(4)(5)?

    Text Solution

    |

  12. If 2^a=3^b=6^(-c), then prove that (1)/(a)+(1)/(b)+(1)/(c )=0.

    Text Solution

    |

  13. Value of 1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+....+1/(sqrt100+s...

    Text Solution

    |

  14. If ((2^(n+4)-2.2^(n))/(2.2^(n+3) )+ 2^(-3) )=x, then the value of x...

    Text Solution

    |

  15. Find the value of m - n, if (9^(n)xx3^(2)xx(3^((-n)/2))^(-2)-(27)^(n...

    Text Solution

    |

  16. If (5+2sqrt3)/(7+4sqrt3)=a+bsqrt3, then the value of a and b is

    Text Solution

    |

  17. Find the value of (a^(p)/a^(q))^(p+q-r)xx(a^(r)/a^(p))^(r+p-q)xx(a^(q)...

    Text Solution

    |

  18. If 2^(P)+3^(q)=17and2^(P+2)-3^(q+1)=5, then find the value of p and q.

    Text Solution

    |