Home
Class 14
MATHS
If a + b + c = 0, then what is the value...

If a + b + c = 0, then what is the value of
`1/((x^(a)+x^(-b)+1))+1/((x^(b)+x^(-c)+1))+1/((x^(c)+x^(-a)+1))=?`

A

1

B

2

C

3

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ S = \frac{1}{x^a + x^{-b} + 1} + \frac{1}{x^b + x^{-c} + 1} + \frac{1}{x^c + x^{-a} + 1} \] given that \( a + b + c = 0 \). ### Step 1: Rewrite the Exponents Since \( c = - (a + b) \), we can rewrite the terms in the expression using this relationship. ### Step 2: Substitute \( c \) Substituting \( c \) into the expression, we have: \[ S = \frac{1}{x^a + x^{-b} + 1} + \frac{1}{x^b + x^{a+b} + 1} + \frac{1}{x^{-(a+b)} + x^{-a} + 1} \] ### Step 3: Simplify Each Term Now we simplify each term one by one. 1. **First term**: \( \frac{1}{x^a + x^{-b} + 1} \) 2. **Second term**: \( \frac{1}{x^b + x^{a+b} + 1} \) 3. **Third term**: \( \frac{1}{x^{-(a+b)} + x^{-a} + 1} \) ### Step 4: Evaluate Each Term Now we can evaluate each term separately. Notice that \( x^{a+b} = x^{-c} \) since \( c = - (a + b) \). ### Step 5: Combine the Terms Combine all three terms together: \[ S = \frac{1}{x^a + x^{-b} + 1} + \frac{1}{x^b + x^{-c} + 1} + \frac{1}{x^{-c} + x^{-a} + 1} \] ### Step 6: Use Symmetry Due to the symmetry in the variables \( a, b, c \), we can see that the expression is symmetric in terms of \( a, b, c \). ### Step 7: Final Evaluation After evaluating the terms and recognizing the symmetry, we can conclude that: \[ S = 1 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise EXERCISE BASE LEVEL QUESTIONS|43 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|17 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|17 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

(1)/(x^(b)+x^(-c)+1)+(1)/(x^(c)+x^(-a)+1)+(1)/(x^(a)+x^(-b)+1)

1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=?

(1)/(1+x^(b-a)+x^(c-a))+(1)/(1+x^(a-b)+x^(c-b))+(1)/(1+x^(b-c)+x^(a-c))=1

(1)/(1+x^(a-b)+x^(a-c))+(1)/(1+x^(b-c)+x^(b-a))+(1)/(1+x^(c-a)+x^(c-b))=1

Prove that: ((x^(a))/(x^(b)))^(c)x((x^(b))/(x^(c)))^(a)x((x^(c))/(x^(a)))^(b)=1

(1)/(1+x^(b-a)+x^(c-a))+(1)/(1+x^(a-b)+x^(c-b))+(1)/(1+x^(a-c)+x^(b-c))

If a^(x)=b, b^(y)=c, c^(z)=a , then what is the value of (1)/((xy+yz+zx))((1)/(x)+(1)/(y)+(1)/(z)) ?

Show that: (1)/(1+x^(b-a)+x^(c-a))+(1)/(1+x^(a-b)+x^(c-b))+(1)/(1+x^(b-c)+x^(a-c))=1