Home
Class 14
MATHS
[{(-1/2)^(2)}^(-2)]^(-1)=?...

`[{(-1/2)^(2)}^(-2)]^(-1)=?`

A

`1/16`

B

16

C

`-1/16`

D

-16

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \([{{(-\frac{1}{2})}^{2}}^{-2}]^{-1}\), we will follow the order of operations step by step. ### Step 1: Simplify the innermost exponent We start with the expression \((- \frac{1}{2})^2\). \[ (-\frac{1}{2})^2 = \frac{1}{4} \] ### Step 2: Apply the next exponent Now we take the result from Step 1 and raise it to the power of \(-2\): \[ (\frac{1}{4})^{-2} \] Using the property of exponents that states \(a^{-n} = \frac{1}{a^n}\), we can rewrite this as: \[ \frac{1}{(\frac{1}{4})^2} \] Calculating \((\frac{1}{4})^2\): \[ (\frac{1}{4})^2 = \frac{1}{16} \] Thus, \[ \frac{1}{(\frac{1}{4})^2} = \frac{1}{\frac{1}{16}} = 16 \] ### Step 3: Apply the outermost exponent Now we take the result from Step 2 and raise it to the power of \(-1\): \[ 16^{-1} \] Using the property of exponents again: \[ 16^{-1} = \frac{1}{16} \] ### Final Result Thus, the final result of the expression \([{{(-\frac{1}{2})}^{2}}^{-2}]^{-1}\) is: \[ \frac{1}{16} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|17 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

Simplify : (1/4)^(-2)+\ (1/2)^(-2)+(1/3)^(-2)

1+(1)/(2)+(1)/(2^(2))+...+(1)/(2^(n-1))=

The sum to n terms of series 1+(1+(1)/(2)+(1)/(2^(2)))+(1+(1)/(2)+(1)/(2^(2))+(1)/(2^(3))+(1)/(2^(4)))+

The orthocentre of triangle with vertices (2,(sqrt(3)-1)/(2)),((1)/(2),-(1)/(2)),(2,-(1)/(2))

A=[(1,2),(2,1)], then adjoint of A is equal to (A) [(1,-2),(-2,1)] (B) [(2,1),(2,1)] (C) [(1,-2),(-2,1)] (D) [(-1,2),(2,-1)]

Prove that (1)/(2)+(1)/(2^(2))+(1)/(2^(3))+.......+(1)/(2^(n))=1-(1)/(2^(n)),n in N

If harmonic mean of numbers (1)/(2),(1)/(2^(2)),(1)/(2^(3)),............(1)/(2^(10)) is (lambda)/(2^(10)-1) then lambda is equal to

If harmonic mean of (1)/(2),(1)/(2^(2)),(1)/(2^(3)),...,(1)/(2^(10)) is (lambda)/(2^(10)-1) , then lambda=

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+...oo=(pi^(2))/(6) then value of 1-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+...oo=