Home
Class 14
MATHS
([(12)^(-2)]^(2))/([(12)^(2)]^(-2))=?...

`([(12)^(-2)]^(2))/([(12)^(2)]^(-2))=?`

A

12

B

4.8

C

`12/144`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(12)^{-2})^{2}}{(12)^{2}}^{-2}\), we will follow these steps: ### Step 1: Simplify the Numerator The numerator is \((12)^{-2})^{2}\). According to the power of a power property, we multiply the exponents: \[ (12)^{-2})^{2} = 12^{-2 \cdot 2} = 12^{-4} \] ### Step 2: Simplify the Denominator The denominator is \((12)^{2})^{-2}\). Again, using the power of a power property, we multiply the exponents: \[ (12)^{2})^{-2} = 12^{2 \cdot -2} = 12^{-4} \] ### Step 3: Write the Fraction Now we can rewrite the expression with the simplified numerator and denominator: \[ \frac{12^{-4}}{12^{-4}} \] ### Step 4: Apply the Quotient Rule Since the bases are the same, we can apply the quotient rule, which states that when dividing like bases, we subtract the exponents: \[ 12^{-4 - (-4)} = 12^{-4 + 4} = 12^{0} \] ### Step 5: Evaluate \(12^{0}\) Any non-zero number raised to the power of 0 is 1: \[ 12^{0} = 1 \] ### Final Answer Thus, the value of the expression \(\frac{(12)^{-2})^{2}}{(12)^{2})^{-2}}\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|17 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

(63)^(2)-(12)^(2)=?

12^(2)+9^(2)=?+108

(450div30)^(2)-(12)^(2)=(?)^(2)

{(5 ^2+(12^2)^(1/2))}^3

The value of (0.0203xx2.92)/(0.7xx0.0365xx 2.9) div ((12.12)^2-(8.12)^2)/((0.25)^2+(0.25) (19.99)) is :- (0.0203xx2.92)/(0.7xx0.0365xx 2.9) div ((12.12)^2-(8.12)^2)/((0.25)^2+(0.25) (19.99)) का मान ज्ञात कीजिए?

A=[(1,2),(2,1)], then adjoint of A is equal to (A) [(1,-2),(-2,1)] (B) [(2,1),(2,1)] (C) [(1,-2),(-2,1)] (D) [(-1,2),(2,-1)]

Equation of parabola whose vertex is (2 5) and focus (2 2) is (A) (x-2)^(2)=12(y-5) (B) (x-2)^(2)=-12(y-5) (C) (x-2)^(2)=12(y-2) (D) (x-2)^(2)= -12(y-2)

Evaluate the following expression : sin^(2).(pi)/(12)+sin^(2).(3pi)/(12)+sin^(2).(5pi)/(12).

Verify the following: (i) (-12)/(5)+(2)/(7)=(2)/(7)+(-12)/(5) (ii) (-5)/(8)+(-9)/(13)= (-9)/(13)+(-5)/(8) (iii) 3+(-7)/(12)=(-7)/(12)+3 (iv) (2)/(-7)+(12)/(-35)=(12)/(-35)+(2)/(-7)

1.2^(2)+2.3^(2)+3.4^(2)+