Home
Class 14
MATHS
Value of ? In expression 7^(8.9)/(343)...

Value of ? In expression
`7^(8.9)/(343)^(1.7)xx(49)^(4.8)=7^(?)` is

A

a. 13.4

B

b. 12.8

C

c. 11.4

D

d. 9.6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{7^{8.9}}{(343)^{1.7} \times (49)^{4.8}} = 7^{?} \), we will first express the bases \( 343 \) and \( 49 \) in terms of base \( 7 \). ### Step 1: Rewrite the bases - We know that \( 343 = 7^3 \) and \( 49 = 7^2 \). - Thus, we can rewrite the expression as: \[ \frac{7^{8.9}}{(7^3)^{1.7} \times (7^2)^{4.8}} \] ### Step 2: Simplify the expression - Using the power of a power property, we can simplify: \[ (7^3)^{1.7} = 7^{3 \times 1.7} = 7^{5.1} \] \[ (7^2)^{4.8} = 7^{2 \times 4.8} = 7^{9.6} \] - Now, substituting back into the expression gives us: \[ \frac{7^{8.9}}{7^{5.1} \times 7^{9.6}} \] ### Step 3: Combine the denominators - We can combine the powers in the denominator: \[ 7^{5.1} \times 7^{9.6} = 7^{5.1 + 9.6} = 7^{14.7} \] - Therefore, the expression now becomes: \[ \frac{7^{8.9}}{7^{14.7}} = 7^{8.9 - 14.7} \] ### Step 4: Calculate the exponent - Now we calculate the exponent: \[ 8.9 - 14.7 = -5.8 \] - Thus, we have: \[ 7^{-5.8} \] ### Step 5: Set the expression equal to \( 7^{?} \) - We can now equate this to \( 7^{?} \): \[ 7^{-5.8} = 7^{?} \] - Therefore, we find that: \[ ? = -5.8 \] ### Final Answer The value of \( ? \) is \( -5.8 \).
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|17 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

7^( 8.9)div(343)^(1.7)xx(49)^(4.8)=7^(?)

(49)^(2)xx (7)^(8)div (343)^(3)=(7)^(?)

(49)^(2) xx (7)^(8) div (343)^(3) = (7)^(?)

Find the value of ((243)^(0.13) xx (243)^(0.07))/((7)^(0.25) xx (49)^(0.075) xx (343)^(0.2))

Solve the following expressions : 7xx7+8-6

The value of (243^(0.13)xx243^(0.07))/(7^(0.25)xx49^(0.07)xx343^(0.2)) is a.(3)/(7)b .(7)/(3)c*1(3)/(7)d.2(2)/(7) e.none of these

Find the value of x so that (-8)^(-4)xx(-8)^7=(-8)^(4xx-3)