Home
Class 14
MATHS
81^(2.5)xx9^(4.5)/3^(4.8)=9^(?)...

`81^(2.5)xx9^(4.5)/3^(4.8)=9^(?)`

A

7.1

B

9.4

C

4.7

D

4.5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{81^{2.5} \times 9^{4.5}}{3^{4.8}} = 9^{?} \), we will first express all the terms in the equation in terms of base 3. ### Step 1: Convert the bases We know that: - \( 81 = 3^4 \) - \( 9 = 3^2 \) Now, we can rewrite the equation: \[ 81^{2.5} = (3^4)^{2.5} = 3^{4 \times 2.5} = 3^{10} \] \[ 9^{4.5} = (3^2)^{4.5} = 3^{2 \times 4.5} = 3^{9} \] \[ 3^{4.8} = 3^{4.8} \] ### Step 2: Substitute back into the equation Now substituting these values back into the equation gives us: \[ \frac{3^{10} \times 3^{9}}{3^{4.8}} = 9^{?} \] ### Step 3: Simplify the left side Using the property of exponents \( a^m \times a^n = a^{m+n} \): \[ 3^{10 + 9 - 4.8} = 3^{18 - 4.8} = 3^{13.2} \] ### Step 4: Convert the right side Now we need to express \( 9^{?} \) in terms of base 3: \[ 9^{?} = (3^2)^{?} = 3^{2?} \] ### Step 5: Set the exponents equal Now we can set the exponents equal to each other: \[ 13.2 = 2? \] ### Step 6: Solve for ? Now, divide both sides by 2: \[ ? = \frac{13.2}{2} = 6.6 \] ### Final Answer Thus, the value of \( ? \) is \( 6.6 \). ---
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|17 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

Solve :9^(8.6)xx8^(3.9)xx72^(4.4)xx9^(3.9)xx8^(8.6)=72^(?)

If (9^(n)xx3^(5)xx27^(3))/(3xx(81)^(4))=27, then n equals

81^(1/4)xx9^(3//2)xx27^(- 4/3)=

((81)^3.6xx(9)^2.7)/((81)^4.2xx(3)) =?

Solve ((5.9)^(3)+(1.8)^(3)+(4.8)^(3)-3xx5.9xx1.8xx4.8)/((5.9)^(2)+(1.8)^(2)+(4.8)^(2)-5.9xx1.8-1.8xx4.8-4.8xx5.9)

9^(3)xx(81)^(2)-:(27)^(3)=(3)^(?)3 b.4c.5d.6