Home
Class 14
MATHS
Value of sqrt(5+2sqrt(6))-1/(sqrt(5+2sqr...

Value of `sqrt(5+2sqrt(6))-1/(sqrt(5+2sqrt(6)))` is

A

`2sqrt2`

B

0

C

`2sqrt3`

D

`sqrt5-1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( \sqrt{5 + 2\sqrt{6}} - \frac{1}{\sqrt{5 + 2\sqrt{6}}} \), we can follow these steps: ### Step 1: Simplify \( \sqrt{5 + 2\sqrt{6}} \) We start by rewriting \( \sqrt{5 + 2\sqrt{6}} \). We can express \( 5 + 2\sqrt{6} \) in a different form. We want to find \( a \) and \( b \) such that: \[ \sqrt{5 + 2\sqrt{6}} = \sqrt{a} + \sqrt{b} \] Squaring both sides gives: \[ 5 + 2\sqrt{6} = a + b + 2\sqrt{ab} \] From this, we can equate the rational and irrational parts: 1. \( a + b = 5 \) 2. \( 2\sqrt{ab} = 2\sqrt{6} \) which simplifies to \( \sqrt{ab} = \sqrt{6} \) or \( ab = 6 \) Now we have a system of equations: \[ a + b = 5 \] \[ ab = 6 \] ### Step 2: Solve for \( a \) and \( b \) We can treat \( a \) and \( b \) as the roots of the quadratic equation: \[ x^2 - (a+b)x + ab = 0 \implies x^2 - 5x + 6 = 0 \] Factoring this gives: \[ (x - 2)(x - 3) = 0 \] Thus, \( a = 2 \) and \( b = 3 \) (or vice versa). Therefore: \[ \sqrt{5 + 2\sqrt{6}} = \sqrt{2} + \sqrt{3} \] ### Step 3: Substitute back into the original expression Now we substitute back into the expression: \[ \sqrt{5 + 2\sqrt{6}} - \frac{1}{\sqrt{5 + 2\sqrt{6}}} = (\sqrt{2} + \sqrt{3}) - \frac{1}{\sqrt{2} + \sqrt{3}} \] ### Step 4: Rationalize the denominator To simplify \( \frac{1}{\sqrt{2} + \sqrt{3}} \), we multiply the numerator and denominator by \( \sqrt{2} - \sqrt{3} \): \[ \frac{1}{\sqrt{2} + \sqrt{3}} \cdot \frac{\sqrt{2} - \sqrt{3}}{\sqrt{2} - \sqrt{3}} = \frac{\sqrt{2} - \sqrt{3}}{(\sqrt{2})^2 - (\sqrt{3})^2} = \frac{\sqrt{2} - \sqrt{3}}{2 - 3} = -(\sqrt{2} - \sqrt{3}) = \sqrt{3} - \sqrt{2} \] ### Step 5: Combine the terms Now we can combine the terms: \[ \sqrt{2} + \sqrt{3} - (\sqrt{3} - \sqrt{2}) = \sqrt{2} + \sqrt{3} - \sqrt{3} + \sqrt{2} = 2\sqrt{2} \] ### Final Answer Thus, the value of the expression \( \sqrt{5 + 2\sqrt{6}} - \frac{1}{\sqrt{5 + 2\sqrt{6}}} \) is: \[ \boxed{2\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|17 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

6.The value of (sqrt(5)+sqrt(2))(sqrt(5)-sqrt(2)) is:

(sqrt(6)+sqrt(3))/(sqrt(5)+sqrt(2))

The value of sqrt(6+2sqrt(3)+2sqrt(2)+2sqrt(6))-(1)/(sqrt(5-2sqrt(6))) is

What is the value of (sqrt(6)+sqrt(5))/(sqrt(6)-sqrt(5)) ?

The value of (1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6))+(1)/(sqrt(6)+sqrt(7))+(1)/(sqrt(7)+sqrt(8))+(1)/(sqrt(8)+sqrt(9)) is

The value of (1)/( sqrt(7) - sqrt(6)) - (1)/( sqrt(6) - sqrt(5) ) +(1)/( sqrt(5) -2) - (1)/( sqrt(8) - sqrt(7) ) +(1)/( 3- sqrt(8)) is

The value of sqrt(5+2sqrt(6)) is sqrt(3)-sqrt(2)(b)sqrt(3)+sqrt(2)(c)sqrt(5)+sqrt(6)(d) none of these

What is the value of (1/(sqrt(9) - sqrt(8)) - 1/(sqrt(8) - sqrt(7)) + 1/(sqrt(7) - sqrt(6)) - 1/(sqrt(6) - sqrt(5)) + 1/(sqrt(5) - sqrt(4))) ?