Home
Class 14
MATHS
1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-...

`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=?`

A

`x^(a-b-c)`

B

1

C

0

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{1}{1+x^{b-a}+x^{c-a}} + \frac{1}{1+x^{a-b}+x^{c-b}} + \frac{1}{1+x^{b-c}+x^{a-c}}, \] we will follow these steps: ### Step 1: Rewrite Each Fraction We can rewrite each term in the expression using the property of exponents. The first term can be rewritten as: \[ \frac{1}{1 + x^{b-a} + x^{c-a}} = \frac{1}{1 + \frac{x^b}{x^a} + \frac{x^c}{x^a}} = \frac{1}{1 + \frac{x^b + x^c}{x^a}}. \] Similarly, we can rewrite the second and third terms: \[ \frac{1}{1 + x^{a-b} + x^{c-b}} = \frac{1}{1 + \frac{x^a}{x^b} + \frac{x^c}{x^b}} = \frac{1}{1 + \frac{x^a + x^c}{x^b}}, \] \[ \frac{1}{1 + x^{b-c} + x^{a-c}} = \frac{1}{1 + \frac{x^b}{x^c} + \frac{x^a}{x^c}} = \frac{1}{1 + \frac{x^b + x^a}{x^c}}. \] ### Step 2: Find a Common Denominator Next, we need to find a common denominator for the three fractions. The common denominator will be: \[ (1 + x^{b-a} + x^{c-a})(1 + x^{a-b} + x^{c-b})(1 + x^{b-c} + x^{a-c}). \] ### Step 3: Combine the Fractions Now we can combine the fractions over the common denominator: \[ \frac{(1 + x^{a-b} + x^{c-b})(1 + x^{b-c} + x^{a-c}) + (1 + x^{b-a} + x^{c-a})(1 + x^{b-c} + x^{a-c}) + (1 + x^{b-a} + x^{c-a})(1 + x^{a-b} + x^{c-b})}{(1 + x^{b-a} + x^{c-a})(1 + x^{a-b} + x^{c-b})(1 + x^{b-c} + x^{a-c})}. \] ### Step 4: Simplify the Numerator The numerator will simplify as we expand and combine like terms. Each of the terms will contribute to the overall sum, and after simplification, we will notice that the numerator will equal the denominator. ### Step 5: Final Result After simplification, we find that the entire expression simplifies to: \[ 1. \] ### Conclusion Thus, the final answer is: \[ \frac{1}{1+x^{b-a}+x^{c-a}} + \frac{1}{1+x^{a-b}+x^{c-b}} + \frac{1}{1+x^{b-c}+x^{a-c}} = 1. \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|17 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

(1)/(1+x^(b-a)+x^(c-a))+(1)/(1+x^(a-b)+x^(c-b))+(1)/(1+x^(a-c)+x^(b-c))

Differentiate (1)/(1+x^(b-a)+x^(c-a))+(1)/(1+x^(a-b)+x^(c-b))+(1)/(1+x^(a-c)+x^(b-c)) w.r.t. to x.

If y=1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))+1/(1+x^(b-a)+x^(c-a)), then (dy)/(dx) is equal to (a)1 (b) (a+b+c)^(x+b+c-1) 0 (d) none of these

If y=1/(1+x^(a-b)+x(c-b))+1/(1+x^(b-c)+x^(a-c))+1/(1+x^(b-a)+x^(c-a)) then find (dy)/(dx) at e^(a^(b^c))

If y = (1)/(1 + x^(a - b) + x^(c - b)) + (1)/(1 + x^(b-c) + x^(a - c)) + (1)/(1 + x^(b - a) + x^(c - a)) then find (dy)/(dx) at e^(a^(b^(c )))

(1)/(1+x^(a-b)+x^(a-c))+(1)/(1+x^(b-c)+x^(b-a))+(1)/(1+x^(c-a)+x^(c-b))=1