Home
Class 14
MATHS
[(root(7)(x^((-7)/3)))^(-3/2)]^(10)=?...

`[(root(7)(x^((-7)/3)))^(-3/2)]^(10)=?`

A

`x^(5)`

B

`x^(-5)`

C

x

D

`1/x`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \([( \sqrt[7]{x^{(-7/3)}} )^{(-3/2)}]^{10}\), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ [( \sqrt[7]{x^{(-7/3)}} )^{(-3/2)}]^{10} \] The 7th root can be expressed as a power of \( \frac{1}{7} \): \[ = [(x^{(-7/3)})^{(1/7)}]^{(-3/2)}]^{10} \] ### Step 2: Apply the power of a power rule Using the power of a power rule \((a^m)^n = a^{m \cdot n}\), we can simplify: \[ = [x^{(-7/3) \cdot (1/7)}]^{(-3/2)}]^{10} \] ### Step 3: Simplify the exponent Now we simplify the exponent: \[ = [x^{(-1/3)}]^{(-3/2)}]^{10} \] ### Step 4: Apply the power of a power rule again Now we apply the power of a power rule again: \[ = x^{(-1/3) \cdot (-3/2) \cdot 10} \] ### Step 5: Calculate the exponent Calculating the exponent: \[ = x^{(1/3) \cdot (3/2) \cdot 10} \] \[ = x^{(1 \cdot 10)/2} \] \[ = x^{5} \] ### Final Answer Thus, the simplified expression is: \[ x^{5} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|17 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

(i) Simplify (2^(2/3)-2^((-2)/3))(2^(4/3)+1+2^((-4)/3)) (ii) [(root(6)(7))^(2)+(root(6)(7))^(-2)][(root(6)(7))^(4)-1+(root(6)(7))^(-4)]

State True or False : (7/3)^(2)xx(7/3)^(5)=(7/3)^(10)

The rationalising factor of root(7)(a^(4)b^(3)c^(5)) is (a) root(7)(a^(3)b^(4)c^(2)) (b) root(7)(a^(3)b^(4)c^(2)) (c) root(7)(a^(2)b^(3)c^(3)) (d) root(7)(a^(2)b^(4)c^(3))

underset( x rarr 1 )("lim")( root ( 3)(7+x^(3))- sqrt( 3 +x^(2)))/( x-1)

Evaluate lim_(x rarr1)(root(1 3)(x)-root(7)(x))/(root(5)(x)-root(3)(x))

(12times4)/(x^((4)/(7)))-(3times4)/(x^((4)/(7)))=x^((10)/(7))

(3x-4)/(7)+(7)/(3x-4)=(5)/(2)

(3)/(10)+(7)/(10^(2))+(3)/(10^(3))+(7)/(10^(4))+(3)/(10^(5))+(7)/(10^(6))+

The number of real roots of (7+4sqrt(3))^(|x|^(-8))+(7-4sqrt(3))^(|x|-8)=14 is