Home
Class 14
MATHS
(sqrt(56+sqrt(56+sqrt(56+...))))/2^(2)=?...

`(sqrt(56+sqrt(56+sqrt(56+...))))/2^(2)=?`

A

0

B

1

C

2

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sqrt{56 + \sqrt{56 + \sqrt{56 + \ldots}}}}{2^2}\), we can follow these steps: ### Step 1: Define the Infinite Nested Radical Let \( p = \sqrt{56 + \sqrt{56 + \sqrt{56 + \ldots}}} \). This means that \( p \) can be expressed as: \[ p = \sqrt{56 + p} \] ### Step 2: Square Both Sides To eliminate the square root, we square both sides: \[ p^2 = 56 + p \] ### Step 3: Rearrange the Equation Rearranging this equation gives us: \[ p^2 - p - 56 = 0 \] ### Step 4: Solve the Quadratic Equation Now we can solve this quadratic equation using the quadratic formula \( p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = -1, c = -56 \): \[ p = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-56)}}{2 \cdot 1} \] \[ p = \frac{1 \pm \sqrt{1 + 224}}{2} \] \[ p = \frac{1 \pm \sqrt{225}}{2} \] \[ p = \frac{1 \pm 15}{2} \] ### Step 5: Calculate the Possible Values of \( p \) Calculating the two possible values: 1. \( p = \frac{16}{2} = 8 \) 2. \( p = \frac{-14}{2} = -7 \) (we discard this since \( p \) must be positive) Thus, we have: \[ p = 8 \] ### Step 6: Substitute Back into the Original Expression Now we substitute \( p \) back into the original expression: \[ \frac{p}{2^2} = \frac{8}{4} = 2 \] ### Final Answer The final answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|17 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

sqrt(sqrt(63)+sqrt(56))=

log_((4)/(3))(56+(sqrt(56+sqrt(56+sqrt(56+......oo))))/(sqrt(64sqrt(64sqrt(64.....oo)))))

If x=log_2(sqrt(56+sqrt(56+sqrt(56+sqrt(56+ . . . oo))))) then which of the following statement holds good?

If x=sqrt(56+sqrt(56+sqrt(56+....oo))) and y=sqrt(56-sqrt(56-sqrt(56....)) then which of the ) followinig true?

The distance between the parallel planes x+2y-3z=2 and 2x+4y-6z+7=0 is (A) 1/sqrt(14) (B) 11/sqrt(56) (C) 7/sqrt(56) (D) none of these

If a= (sqrt(5) + sqrt(2))/(sqrt(5) -sqrt(2)) and b = (sqrt(5)-sqrt(2))/(sqrt(5)+sqrt(2)) show that 3a^(2) + 4ab -3b^(2) = 4 +(56)/(3) sqrt(10)

(root(6)(15-2sqrt(56)))*(root(3)(sqrt(7)+2sqrt(2))) =_______.

Compute the following 56+(log)sqrt(2)(4)/(sqrt(7)+sqrt(3))+(log)_(1/2)(1)/(10+2sqrt(21))