Home
Class 14
MATHS
If (sqrt7-sqrt5)/(sqrt7+sqrt5)=a+bsqrt(3...

If `(sqrt7-sqrt5)/(sqrt7+sqrt5)=a+bsqrt(35)`, then the value of (a - b) is

A

5

B

6

C

8

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{\sqrt{7} - \sqrt{5}}{\sqrt{7} + \sqrt{5}} = a + b\sqrt{35}\), we will follow these steps: ### Step 1: Rationalize the Left-Hand Side We start with the left-hand side: \[ \frac{\sqrt{7} - \sqrt{5}}{\sqrt{7} + \sqrt{5}} \] To rationalize the denominator, we multiply the numerator and denominator by the conjugate of the denominator, which is \(\sqrt{7} - \sqrt{5}\): \[ \frac{(\sqrt{7} - \sqrt{5})(\sqrt{7} - \sqrt{5})}{(\sqrt{7} + \sqrt{5})(\sqrt{7} - \sqrt{5})} \] ### Step 2: Simplify the Numerator Now, we simplify the numerator: \[ (\sqrt{7} - \sqrt{5})^2 = \sqrt{7}^2 - 2\sqrt{7}\sqrt{5} + \sqrt{5}^2 = 7 - 2\sqrt{35} + 5 = 12 - 2\sqrt{35} \] ### Step 3: Simplify the Denominator Next, we simplify the denominator using the difference of squares: \[ (\sqrt{7})^2 - (\sqrt{5})^2 = 7 - 5 = 2 \] ### Step 4: Combine the Results Now we can combine the results: \[ \frac{12 - 2\sqrt{35}}{2} = \frac{12}{2} - \frac{2\sqrt{35}}{2} = 6 - \sqrt{35} \] ### Step 5: Set Equal to Right-Hand Side Now we have: \[ 6 - \sqrt{35} = a + b\sqrt{35} \] From this, we can equate the coefficients: - \(a = 6\) - \(b = -1\) ### Step 6: Calculate \(a - b\) Finally, we calculate \(a - b\): \[ a - b = 6 - (-1) = 6 + 1 = 7 \] Thus, the value of \(a - b\) is \(\boxed{7}\).
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|17 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

(sqrt2+sqrt7)/(sqrt2-sqrt7)=a+bsqrt(14)

If (5+2sqrt3)/(7+4sqrt3)=a+bsqrt3 , then the value of a and b is

7/(sqrt5-sqrt3) =

If (4 sqrt(3) + 5 sqrt(2))/(sqrt(48 ) + sqrt(18))= a + bsqrt(6) , then the value of a and b are respectively

(sqrt(5)+sqrt(3))/(sqrt(5)-sqrt(3))+(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3))+(sqrt(8)+sqrt(7))/(sqrt(8)-sqrt(7))-(sqrt(8)-sqrt(7))/(sqrt(8)+sqrt(7))=a+b sqrt(14) Find the value of (a-b) (a) 8, (b) 16 (c) 4, (d) 0