Home
Class 14
MATHS
If a=2+sqrt3, then what is the value of ...

If `a=2+sqrt3`, then what is the value of `(a^(2)+a^(-2))`?

A

12

B

14

C

16

D

18

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a^2 + a^{-2} \) where \( a = 2 + \sqrt{3} \), we can follow these steps: ### Step 1: Calculate \( a^2 \) We start with the expression for \( a \): \[ a = 2 + \sqrt{3} \] Now, we calculate \( a^2 \): \[ a^2 = (2 + \sqrt{3})^2 \] Using the identity \( (A + B)^2 = A^2 + 2AB + B^2 \): \[ a^2 = 2^2 + 2 \cdot 2 \cdot \sqrt{3} + (\sqrt{3})^2 \] Calculating each term: \[ = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] ### Step 2: Calculate \( a^{-1} \) Next, we find \( a^{-1} \): \[ a^{-1} = \frac{1}{a} = \frac{1}{2 + \sqrt{3}} \] To rationalize the denominator, we multiply the numerator and denominator by the conjugate \( 2 - \sqrt{3} \): \[ a^{-1} = \frac{2 - \sqrt{3}}{(2 + \sqrt{3})(2 - \sqrt{3})} \] Calculating the denominator: \[ (2 + \sqrt{3})(2 - \sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] Thus, we have: \[ a^{-1} = 2 - \sqrt{3} \] ### Step 3: Calculate \( a^{-2} \) Now, we calculate \( a^{-2} \): \[ a^{-2} = (a^{-1})^2 = (2 - \sqrt{3})^2 \] Using the same identity: \[ a^{-2} = 2^2 - 2 \cdot 2 \cdot \sqrt{3} + (\sqrt{3})^2 \] Calculating each term: \[ = 4 - 4\sqrt{3} + 3 = 7 - 4\sqrt{3} \] ### Step 4: Combine \( a^2 \) and \( a^{-2} \) Now we can find \( a^2 + a^{-2} \): \[ a^2 + a^{-2} = (7 + 4\sqrt{3}) + (7 - 4\sqrt{3}) \] Combining the terms: \[ = 7 + 4\sqrt{3} + 7 - 4\sqrt{3} = 14 \] ### Final Answer Thus, the value of \( a^2 + a^{-2} \) is: \[ \boxed{14} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|17 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

if a=2 + sqrt3 , then find the value of (a-1/a) .

If a = 2+ sqrt3 then find the value of -a 1/a

If a=2+sqrt3 , then the value of (a^(2)+(1)/(a^(2))) is

If x=sqrt((2+sqrt(3))/(2-sqrt(3))) ,then what is the value of (x^(2)+x-9) ?