Home
Class 14
MATHS
If x=(sqrt(3)+1)/(sqrt3-1)andy=(sqrt3-1)...

If `x=(sqrt(3)+1)/(sqrt3-1)andy=(sqrt3-1)/(sqrt3+1),"then "x^(2)+y^(2)` is equal to

A

14

B

13

C

15

D

10

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^2 + y^2 \) given: \[ x = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \quad \text{and} \quad y = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \] ### Step 1: Simplify \( x \) To simplify \( x \), we will rationalize the denominator: \[ x = \frac{\sqrt{3} + 1}{\sqrt{3} - 1} \cdot \frac{\sqrt{3} + 1}{\sqrt{3} + 1} = \frac{(\sqrt{3} + 1)^2}{(\sqrt{3} - 1)(\sqrt{3} + 1)} \] Calculating the denominator: \[ (\sqrt{3} - 1)(\sqrt{3} + 1) = \sqrt{3}^2 - 1^2 = 3 - 1 = 2 \] Calculating the numerator: \[ (\sqrt{3} + 1)^2 = \sqrt{3}^2 + 2(\sqrt{3})(1) + 1^2 = 3 + 2\sqrt{3} + 1 = 4 + 2\sqrt{3} \] Thus, \[ x = \frac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3} \] ### Step 2: Simplify \( y \) Now, we will simplify \( y \) in a similar manner: \[ y = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} \cdot \frac{\sqrt{3} - 1}{\sqrt{3} - 1} = \frac{(\sqrt{3} - 1)^2}{(\sqrt{3} + 1)(\sqrt{3} - 1)} \] Calculating the denominator (already done): \[ (\sqrt{3} + 1)(\sqrt{3} - 1) = 2 \] Calculating the numerator: \[ (\sqrt{3} - 1)^2 = \sqrt{3}^2 - 2(\sqrt{3})(1) + 1^2 = 3 - 2\sqrt{3} + 1 = 4 - 2\sqrt{3} \] Thus, \[ y = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3} \] ### Step 3: Calculate \( x^2 + y^2 \) Now we can find \( x^2 + y^2 \): \[ x^2 = (2 + \sqrt{3})^2 = 2^2 + 2(2)(\sqrt{3}) + (\sqrt{3})^2 = 4 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3} \] \[ y^2 = (2 - \sqrt{3})^2 = 2^2 - 2(2)(\sqrt{3}) + (\sqrt{3})^2 = 4 - 4\sqrt{3} + 3 = 7 - 4\sqrt{3} \] Now, adding \( x^2 \) and \( y^2 \): \[ x^2 + y^2 = (7 + 4\sqrt{3}) + (7 - 4\sqrt{3}) = 7 + 7 + 4\sqrt{3} - 4\sqrt{3} = 14 \] ### Final Answer Thus, the value of \( x^2 + y^2 \) is: \[ \boxed{14} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise HIGHER SKILL LEVEL QUESTIONS|17 Videos
  • INDICES AND SURDS

    ARIHANT SSC|Exercise MULTI CONCEPT QUESTIONS|4 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

if x=sqrt(3)+(1)/(sqrt(3)) and y=sqrt(3)-(1)/(sqrt(3)) then x^(2)-y^(2) is

If x=(sqrt3-1)/(sqrt3+1) and y=(sqrt3+1)/(sqrt3-1) then x^2-xy+y^2

If x=(sqrt(3)+1)/(sqrt(3)-1) and y=(sqrt(3)-1)/(sqrt(3)+1) then find the value of x^(2)+y^(2)

(2+sqrt2)/(1+sqrt3)times(1-sqrt3)/(1-sqrt3)=?