Home
Class 14
MATHS
Simplify [root(3)(root(6)(2^(9)))]^(4)xx...

Simplify `[root(3)(root(6)(2^(9)))]^(4)xx[root(6)(root(3)(2^(9)))]^(4)`.

A

`2^(4)`

B

`2^(9)`

C

`2^(3)`

D

`2^(16)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's simplify the expression \([ \sqrt[3]{\sqrt{6}(2^9)} ]^4 \times [ \sqrt{6}(\sqrt[3]{2^9}) ]^4\) step by step. ### Step 1: Rewrite the expression The expression can be rewritten as: \[ \left( \sqrt[3]{\sqrt{6} \cdot 2^9} \right)^4 \times \left( \sqrt{6} \cdot \sqrt[3]{2^9} \right)^4 \] ### Step 2: Apply the power of a product rule Using the property \((ab)^n = a^n \cdot b^n\), we can separate the components: \[ = \left( \sqrt[3]{\sqrt{6}} \cdot \sqrt[3]{2^9} \right)^4 \times \left( \sqrt{6} \cdot \sqrt[3]{2^9} \right)^4 \] ### Step 3: Simplify each component Now, we simplify each part: 1. For \(\sqrt[3]{\sqrt{6}}\): \[ \sqrt[3]{\sqrt{6}} = \sqrt[3]{6^{1/2}} = 6^{1/6} \] 2. For \(\sqrt[3]{2^9}\): \[ \sqrt[3]{2^9} = 2^{9/3} = 2^3 \] 3. For \(\sqrt{6}\): \[ \sqrt{6} = 6^{1/2} \] ### Step 4: Substitute back into the expression Substituting these back into the expression gives: \[ = \left( 6^{1/6} \cdot 2^3 \right)^4 \times \left( 6^{1/2} \cdot 2^3 \right)^4 \] ### Step 5: Apply the power of a product rule again Now we can apply the power of a product rule: \[ = (6^{4/6} \cdot 2^{12}) \times (6^{4/2} \cdot 2^{12}) \] ### Step 6: Simplify the powers Calculating the powers: 1. \(6^{4/6} = 6^{2/3}\) 2. \(6^{4/2} = 6^2\) Now we have: \[ = (6^{2/3} \cdot 2^{12}) \times (6^2 \cdot 2^{12}) \] ### Step 7: Combine like terms Combining the powers of \(6\) and \(2\): \[ = 6^{2/3 + 2} \cdot 2^{12 + 12} \] Calculating the exponents: \[ = 6^{2/3 + 6/3} \cdot 2^{24} = 6^{8/3} \cdot 2^{24} \] ### Step 8: Final simplification Now we can express \(6^{8/3}\) as: \[ = (6^8)^{1/3} \cdot 2^{24} \] ### Conclusion The final simplified expression is: \[ = 6^{8/3} \cdot 2^{24} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise EXERCISE BASE LEVEL QUESTIONS|43 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

Simplify: [root(3)(root(6)(5^(9)))]^(8)[root(6)(root(3)(5^(9)))]^(8)

Simplify : [root(3)root(6)(5^(9))]^(4)[root(3)root(6)(5^(9)]]^(4)

root (4) (root(3)(2^2))

The expression [root(3)(root(6)(a^(9)))]^(4)[root(6)(root(3)(a^(9)))]^(4) is simplified to a.a ^(16) b.a^(12) c.a^(8) d.a^(4)

root(4)(root(3)(3^2))

The expression (root(3)(root(6)(a^(9))))^(4)(root(6)(root(3)(a^(9))))^(4) is simplified to a^(16)(b)a^(12)(c)a^(8)(d)a^(4)

root(6)((root(2)(5^4))^6)