Home
Class 14
MATHS
Arrange root(4)(3),root(6)(10),root(12)(...

Arrange `root(4)(3),root(6)(10),root(12)(25)` in descending order.

A

`root(6)(10)gtroot(4)(3)gtroot(12)(25)`

B

`root(12)(25)gtroot(4)(3)gtroot(6)(10)`

C

`root(6)(10)gtroot(12)(25)gtroot(4)(3)`

D

`root(4)(3)gtroot(12)(25)gtroot(6)(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To arrange the numbers \( \sqrt[4]{3}, \sqrt[6]{10}, \sqrt[12]{25} \) in descending order, we can follow these steps: ### Step 1: Convert to a Common Root To compare these roots easily, we need to express all of them with a common root. The least common multiple (LCM) of the indices (4, 6, and 12) is 12. Therefore, we will convert each root to have a denominator of 12. ### Step 2: Convert \( \sqrt[4]{3} \) To convert \( \sqrt[4]{3} \) to a 12th root: \[ \sqrt[4]{3} = \sqrt[12]{3^{3}} = \sqrt[12]{27} \] ### Step 3: Convert \( \sqrt[6]{10} \) To convert \( \sqrt[6]{10} \) to a 12th root: \[ \sqrt[6]{10} = \sqrt[12]{10^{2}} = \sqrt[12]{100} \] ### Step 4: Convert \( \sqrt[12]{25} \) This is already in the desired form: \[ \sqrt[12]{25} = \sqrt[12]{25} \] ### Step 5: Compare the Values Now we have: - \( \sqrt[12]{27} \) - \( \sqrt[12]{100} \) - \( \sqrt[12]{25} \) Next, we compare the values inside the roots: - \( 27 \) (from \( \sqrt[12]{27} \)) - \( 100 \) (from \( \sqrt[12]{100} \)) - \( 25 \) (from \( \sqrt[12]{25} \)) ### Step 6: Arrange in Descending Order Now we can arrange these values in descending order based on their radicands: - \( 100 \) (largest) - \( 27 \) (middle) - \( 25 \) (smallest) Thus, the order of the original roots in descending order is: \[ \sqrt[6]{10} > \sqrt[4]{3} > \sqrt[12]{25} \] ### Final Answer The final arrangement in descending order is: \[ \sqrt[6]{10} > \sqrt[4]{3} > \sqrt[12]{25} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise EXERCISE BASE LEVEL QUESTIONS|43 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

Arrange root(4)(3),root(3)(2)androot(6)(5) in the decreasing order.

root(6)((root(2)(5^4))^6)

root(3)(2) . root(4)(2) . root(12)(32)

root(4)(root(3)(3^2))

root(3)(7)times root(6)(6)

root(3)(4) times root(6)(5)

root(3)(2) times root(6)(9)

root(3)(4)times root(3)(16)