Home
Class 14
MATHS
If m=7-4sqrt3,"then "(sqrtm+1/sqrtm)=?...

If `m=7-4sqrt3,"then "(sqrtm+1/sqrtm)=?`

A

8

B

3

C

4

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sqrt{m} + \frac{1}{\sqrt{m}} \) given \( m = 7 - 4\sqrt{3} \). ### Step-by-Step Solution: 1. **Substitute the value of \( m \)**: \[ \sqrt{m} + \frac{1}{\sqrt{m}} = \sqrt{7 - 4\sqrt{3}} + \frac{1}{\sqrt{7 - 4\sqrt{3}}} \] 2. **Let \( x = \sqrt{m} \)**: \[ x = \sqrt{7 - 4\sqrt{3}} \] Then we need to find \( x + \frac{1}{x} \). 3. **Square both sides**: \[ \left( x + \frac{1}{x} \right)^2 = x^2 + 2 + \frac{1}{x^2} \] This simplifies to: \[ x^2 + \frac{1}{x^2} = \left( x + \frac{1}{x} \right)^2 - 2 \] 4. **Find \( x^2 \)**: \[ x^2 = 7 - 4\sqrt{3} \] 5. **Find \( \frac{1}{x^2} \)**: \[ \frac{1}{x^2} = \frac{1}{7 - 4\sqrt{3}} \] To simplify this, we can rationalize the denominator: \[ \frac{1}{7 - 4\sqrt{3}} \cdot \frac{7 + 4\sqrt{3}}{7 + 4\sqrt{3}} = \frac{7 + 4\sqrt{3}}{(7 - 4\sqrt{3})(7 + 4\sqrt{3})} \] The denominator simplifies to: \[ 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1 \] Thus, \[ \frac{1}{x^2} = 7 + 4\sqrt{3} \] 6. **Combine \( x^2 \) and \( \frac{1}{x^2} \)**: \[ x^2 + \frac{1}{x^2} = (7 - 4\sqrt{3}) + (7 + 4\sqrt{3}) = 14 \] 7. **Use the squared equation**: \[ \left( x + \frac{1}{x} \right)^2 = 14 + 2 = 16 \] 8. **Take the square root**: \[ x + \frac{1}{x} = \sqrt{16} = 4 \quad \text{or} \quad -4 \] ### Final Answer: \[ \sqrt{m} + \frac{1}{\sqrt{m}} = 4 \quad \text{or} \quad -4 \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise EXERCISE BASE LEVEL QUESTIONS|43 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

If m=7+4 sqrt(3),(sqrt(m)+(1)/(sqrt(m)))=? / यदि m = 7 + 4 sqrt(3) , ( sqrt( m) + (1)/( sqrtm ) ) = ?

If x=sqrt(7+4sqrt(3)), then x+(1)/(x)=

If p= 7-4sqrt(3) , then (p^(2)+1)/(7p) =_____.

If a=7-4sqrt3 then a^(1/2)+a^(-1/2)=

sqrt(7+4sqrt3) - sqrt(7-4sqrt3) =

If n = 7 + 4sqrt(3) then value of (sqrt(n) + 1/(sqrtn)) is

if x=sqrt(7+4sqrt(3)) then x+(1)/(x)

if a=7-4sqrt(3), find the value of sqrt(a)+(1)/(sqrt(a))