Home
Class 14
MATHS
Simplify 6sqrt((27)^(-2/3)+(8)^(-2/3))...

Simplify `6sqrt((27)^(-2/3)+(8)^(-2/3))`

A

`root(6)(35)`

B

`6/sqrt13`

C

`sqrt13`

D

`root(6)(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 6\sqrt{(27)^{-2/3} + (8)^{-2/3}} \), we can follow these steps: ### Step 1: Rewrite the expression using powers We start with the expression: \[ 6\sqrt{(27)^{-2/3} + (8)^{-2/3}} \] We can express \( 27 \) and \( 8 \) as powers: \[ 27 = 3^3 \quad \text{and} \quad 8 = 2^3 \] Thus, we rewrite the expression: \[ 6\sqrt{(3^3)^{-2/3} + (2^3)^{-2/3}} \] ### Step 2: Apply the power of a power rule Using the power of a power rule \( (a^m)^n = a^{m \cdot n} \), we simplify: \[ (3^3)^{-2/3} = 3^{3 \cdot (-2/3)} = 3^{-2} \quad \text{and} \quad (2^3)^{-2/3} = 2^{3 \cdot (-2/3)} = 2^{-2} \] So we can rewrite the expression as: \[ 6\sqrt{3^{-2} + 2^{-2}} \] ### Step 3: Rewrite negative exponents Next, we rewrite the negative exponents: \[ 3^{-2} = \frac{1}{3^2} = \frac{1}{9} \quad \text{and} \quad 2^{-2} = \frac{1}{2^2} = \frac{1}{4} \] Thus, we have: \[ 6\sqrt{\frac{1}{9} + \frac{1}{4}} \] ### Step 4: Find a common denominator To add the fractions \( \frac{1}{9} + \frac{1}{4} \), we need a common denominator. The least common multiple of \( 9 \) and \( 4 \) is \( 36 \): \[ \frac{1}{9} = \frac{4}{36} \quad \text{and} \quad \frac{1}{4} = \frac{9}{36} \] Thus: \[ \frac{1}{9} + \frac{1}{4} = \frac{4}{36} + \frac{9}{36} = \frac{13}{36} \] ### Step 5: Substitute back into the expression Now we substitute back into the square root: \[ 6\sqrt{\frac{13}{36}} \] ### Step 6: Simplify the square root We can simplify the square root: \[ \sqrt{\frac{13}{36}} = \frac{\sqrt{13}}{\sqrt{36}} = \frac{\sqrt{13}}{6} \] Thus, we have: \[ 6 \cdot \frac{\sqrt{13}}{6} = \sqrt{13} \] ### Final Answer The simplified expression is: \[ \sqrt{13} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES AND SURDS

    ARIHANT SSC|Exercise EXERCISE BASE LEVEL QUESTIONS|43 Videos
  • HEIGHT AND DISTANCE

    ARIHANT SSC|Exercise Fast Track Practice|25 Videos
  • LINE GRAPH

    ARIHANT SSC|Exercise FAST TRACK PRACTICE|43 Videos

Similar Questions

Explore conceptually related problems

Simplify : (27)^frac(-2)(3)

Simplify 6sqrt(3)+ 5sqrt(12)

Simplify sqrt(3+2sqrt(2))

Simplify: (27)^((2)/(3))

Simplify : sqrt(3+2sqrt(2))

Simplify (sqrt3+2)^2-(sqrt3-2)^2

Simplify (sqrt(3)+2)(sqrt(3)-2)

Simplify: sqrt(3-2sqrt(2))

Simplify 6sqrt3+5sqrt12

Simplify : (root6(27)-sqrt(6(3)/4))^(2)